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What is Machine Learning ?

A subset of artificial intelligence in the field of computer
science that often uses statistical techniques to give

computers the ability to "learn"with data, without being
explicitly programmed

Samuel Arthur -1959 -ML in Checkers

 Definition "to learn” from dictionary:

"Gain knowledge or understanding of, or skill in by study, instruction
or experience"

- Learning a set of new facts
- Learning how to do something
- Improving ability of something already learned
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What is Machine Learning ?

« Why learning ?

- Machine learning is programming computers to optimize a
performance criterion using example data or past experience

- Learning is used when :

26/01/2023

Human expertise does not exist

Humans are unable to explain their expertise

Amount of knowledge is too large for explicit encoding
Solution changes in time

Relationships can be hidden within large amounts of data
Solution needs to be adapted to particular cases

New knowledge is constantly being discovered by humans
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The automatic extraction of semantic information from raw
signal is at the core of many applications (object recognition,
speech processing, natural language processing, planning, etc).

Can we write a computer program that does that?
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 The (human) brain is so good at interpreting visual
information that the gap between raw data and its

semantic interpretation is difficult to assess
intuitively:

This is a mushroom.
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This is a mushroom.
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In [1]: from matplotlib.pyplot import imread
imread("mushroom-small.png")

Out[1]: array([[[0.03921569, 0.03529412, ©.02352941, 1. 1,
[0.2509804 , ©.1882353 , 0.20392157, 1. 1,
[0.4117647 , ©.34117648, ©.37254903, 1. 1,
[0.20392157, ©.23529412, 0.17254902, 1. 1,
[0.16470589, ©.18039216, 0.12156863, 1. 1,
[0.18039216, ©.18039216, 0.14117648, 1. 11,

[[0.12549082 , ©.11372549, 0.09411765, 1. 1,
[0.2901961 , ©.2509804 , ©.24705882, 1. 1,
[0.21176471, 0.2 , ©.20392157, 1. 1,
[0.1764706 , ©.24705882, 0.12156863, 1. 1,
[0.10980392, ©.15686275, ©.07843138, 1. 1,
[0.16470589, ©.20784314, 0.11764706, 1. 11,

[[0.14117648, ©.12941177, 0.10980392, 1. 1,
[0.21176471, ©.1882353 , 0.16862746, 1. 1,
[0.14117648, ©.13725491, 0.12941177, 1. 1,
[0.10980392, ©.15686275, 0.08627451, 1. 1,
[0.0627451 , ©.08235294, ©.05098039, 1. 1,
[0.14117648, 0.2 , 0.09803922, 1. 11,

t This is a mushroom.
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 Extracting semantic information requires models of
high complexity.
- Cannot write a computer program that reproduces this process.

- However, can write a program that learns the task of extracting
semantic information.

« A common strategy to solve this issue consists in:

- Defining a parametric model with high capacity

- Optimizing its parameters by “making it work” on the training
data

Learning - tuning the many parameters of the model
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Machine learning is ...

 Finding patterns or associations that can be used
to make prediction

Data Algorithm Model

* f WX | = Prediction

ML is general term -» many algorithms / methods
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010000110100110110000110000100010000
010101110011001111011001110100010111
001000010101100101000001000010011110
011101001111110010111010101010111100
100010000101100010101101010111000101
010010000100101011110011100001010000
010110000010011101010010101110110001
011011111010111100010100010100010000
011010011011011010001000101111001101
000101000001100110001100100010010110
100101010100010011100101010101111101

 Big Picture Goal : Learning useful generalizations
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Statistics vs Machine Learning

 Largely overlapping fields:

- Both concerned with learning from data

- Philosophical difference on ‘focus’ and ‘approach’.
« Statistics:

- Founded in mathematics
- Drawing valid conclusions based on analyzing existing data.

 Making inference about a ‘population’ based on a ‘sample’
 Tends to focus on fewer variables at once.
* Precision and uncertainty are measures of model goodness.

« Machine Learning:
- Founded in computer science

- Focused on making predictions or seeking patterns (generalization).

» Often considers a large number of variables at once.
* Prediction accuracy to measure model goodness.
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Some illustrative examples

airplane 3.!_4-, » ..:“!
automobile Eﬂh‘
s EmEl WE ¥ LN
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horse -.mﬂ-u ‘
o g e P -
truck dlhpi

Classification
CIFAR10 dataset (50k images 32x32x3)
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Some illustrative examples

. -
*  famgets .
e UE MEAN !
fue 95% confidence interval
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Lk - = - 95% confidence interval (means)
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—— FITC mean samples
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inclucing means
95% confident inferval (ndudng means)
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targets

inputs

Regression
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Some illustrative examples

Object detection and segmentation
K. He et al., Mask R-CNN (2017) arXiv:1703.06870
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Some illustrative examples

Human pose estimation
Y. Chen et al, Adversarial PoseNet (2017) arXiv:1705.00389
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Some illustrative examples

Data generation
M. Arjovsky et al, Wasserstein GAN, (2017) arXiv:1701.07875
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Some illustrative examples

can you give an short example of output of chatGPT for illustrating it to master students
in nuclear physics

Here is an example of an output of ChatGPT that could be used to illustrate the
capabilities of the model to master students in nuclear physics:

"ChatGPT is a powerful language model that can understand and generate scientific text.
For example, it can generate a brief explanation of a nuclear physics concept such as beta

decay:

"Beta decay is a type of radioactive decay in which a beta particle (an electron or a
positron) is emitted from the nucleus of an atom. This process changes the atomic
number of the atom, resulting in the formation of a different element or isotope. Beta
decay is an important process in nuclear physics as it plays a role in the production of
elements in stars and in the decay of certain radioactive isotopes used in medical and
industrial applications."

This output provides a clear and concise explanation of beta decay, demonstrating the
model's ability to understand and generate scientific text relevant to the field of nuclear
physics.

a photograph of an astronaut riding a horse

Transformers

R. Rombach et al. Stable diffusion (2022) OpenAl, ChatGPT (2022)
ArXiv:2112.10752 https://openai.com/models/gpt-3/
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Example : Spam detection

 Naive approach

26/01/2023

Observe what is a spam
and detect recurrent
patterns

write an algorithm of
these patterns

If a new email contains
these patterns then
classify it as a spam

iterate until convergence

C. Rappold - Intro to ML

Launch!

Study the -
inbi, —p= Write rules —@ub
‘ Analyze 4

errors

« Complex task
 High nb of rules
 Difficult to update




Example : Spam detection

 Machine learning

1. A ML spam filter —
automatically learns

relevant patterns v

Study the Train ML
problem algorithm

‘ Analyze

errors

Evaluate
solution
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Example : Spam detection

 Machine learning

1. A ML spam filter
automatically learns
relevant patterns

2. Automatic adaptation

C. Rappold - Intro to ML
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Update
data

<— Launch!

l @ automated ®

Train ML
algorithm

Evaluate
solution




Example : Spam detection

 Machine learning

1. A ML spam filter
automatically learns " —J:Xg)
relevant patterns Soluion

: A
2. Automatic adaptation i /["'_’".1‘, / mspelcme

*Lots* of data solution
3. Can help humans to

learn —» Data Mining i
lterate if needed |- i ‘( l;?g;r:: g:&:
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Supervised learning

* Important aspects :

- Labeled data
- Direct feedback
- Predict outcome

4 0
003D 0o D°
0,0 00 oC0
Training set o O % O
O 0 g O

Label m o
PR PR X 08’y *
g ?
&2 E> @ O~ o Value?
@.E m New instance >
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Supervised learning

Workflow

Feature Extraction and Scaling
Feature Selection

Dimensionality Reduction
Sampling

'S ~

Training Dataset

Raw
Data

Labels

fos
Test Dataset l--

Preprocessing

T

Learning

Learning
*

Model Selection
Cross-Validation

Performance Metrics
Hyperparameter Optimization

|
|
Final Model :
|
|

<=

Evaluation

\

Prediction

Instance: A specific observation of data.

Feature: An measurable property of

instance.

Criterion/Outcome: The feature that you

want to predict.

Model: Representation or simulation of

reality. Typically a simplification based on
assumptions
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Supervised learning

 Main algorithms:

- K-nearest neighbors @ x
- e Oy
« Within the dataset take k nearest ® .
neighbors (with defined norm) ® e &
 Each neighbor provide a class — vote
* Most vote gives an estimate of the * *
class of the new data k=5

x
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Supervised learning

 Main algorithms:

- Support vector machine
- Dataset: (x, y,) with i=1...n and
y=1{-1,1}
 Goal is to find hyperplane :
wix-b=20
« Minimization : ||w||, such that
y(w'x. - b)>1 fori=1...n

» Classifier : x = sgn(w'x - b)
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Supervised learning

 Main algorithms:

- Decision Trees :

 The criterion is modeled as a
sequence of logical TRUE or FALSE

« Recursively partitions the feature 7
space such that the samples with the TR
same labels or similar target values
are grouped together.

samples = 6
value = [0, 2, 4]
class = virginica

(‘petal width (cm)< 1.55
pmgini:O(M?M J

sepal length (cm)=< 6.95)
gini = 0.444)4

 Minimize the impurity:

gini =0.0
. samples = 2
Nleft NTioht bl
G=""—H (Set, ;, )+ =——H (Set,;,)
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Supervised learning

 Main algorithms:

- Artificial neural network
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Unsupervised learning

* Important aspects :

- No Labels or targets
- No feedback
- Find hidden structures

Training set Featned d 8 ;
= A 20 aa 8 I: -
h a %8 ( ﬁ ______ R = h I,’ &i‘\

B % s T
ﬁ o X p ~
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26/01/2023 C. Rappold - Intro to ML



Supervised learning

 Main algorithms:

- Clustering

26/01/2023

K-means and variants

- Partition N obs into K-cluster

- Minimization of the within-cluster sum-of-squares criterion: > min (|| x,—y,|[*)
- Iterative process by updating the centroid of each cluster

Initialization

-

E step

i=0 H; E Ci

M step

e
J ° 4
&
T T

-

M step

Convergence
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Unsupervised learning

 Main algorithms:

- Clustering

* Hierarchical cluster analysis
- Needs one metric ([].[],)

- linkage criteria: d between clusters as a function of the d between
observations ( complete-linkage clustering max{d(a,b):a€ A,b€B})
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Unsupervised learning

 Main algorithms:
- Clustering

Customer classification
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Unsupervised learning

 Main algorithms:

- Dimensionality reduction —» Several aspects

* high-dimensional datasets & the “curse of dimensionality”

- When dimension UP, volume space unit hypercube UP, dataset become
very sparse — problematic for statistics significance

1D, unit interval & 100 uniformly distributed sample: distance
spacing is 10~°
» 10D unit hypercube, for same lattice spacing needs 10%° samples.

e Reduce dimension of dataset

— Feature extraction: pre-processing steps for other algorithms
— Data visualization: sometimes it is nice to also see the data
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Unsupervised learning

[,
]

 Main algorithms:

_
=

- Dimensionality reduction

* Principal component analysis:

- Decompose a multivariate

dataset in set of successive e |

orthogonal components e e e

- In which a maximum amount of ~ur

the variance. § : /
* Those are the eigenvector and " ) ﬂ,/

eigenvalue of the covariance o
matrix of the dataset. N

| |
[=)) S N =) N [ o o)
T T T T T T T
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Reinforcement learning

 Supervised Learning : Explicit target signal of answer
 Unsupervised Learning : No answer

 Reinforcement Learning : No answer to a given task, but
encourage the training through evaluation of agent’s behavior

- Agent: Subject —
4 y N\

Reward: Evaluation ' Action: manipulation
+ observation of the state //

. B
' Environement : object <

State change
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Reinforcement learning

 Reinforcement Learning : No answer to a given task, but
encourage the training through evaluation of agent’s behavior

- Find the optimal policy: the strategy of the agent

’/Environment e ? Agent

. N\
i | ki Rl o Observe
- -
ool &
--—’?“o,ﬁ,o‘?'- - Select action
g : -’4! e ﬂ b using policy
: w - :
\ ! Wl : wd /
i T
- o Action!
] § -50 points L
00O Get reward
ko J or penalty
Update policy
(learning step)
Iterate until an
o optimal policy is
found
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Logistic regression to neural network

« Case : Separate dataset from 2 classes
 Data from joint distribution (X, y) ~ P(X,y)

- Features: XeR"

Red:y=0
- Labels: y€(0,1]

- Joint distribution:

X2 Ny ; &2
p(X,y)=p(xly)p(y)
/ \ See "

Likelihood function:
Distribution of the features Prior:
For a given class Probability of each class Xq

38
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Logistic regression to neural network

 Separating classes - Predict the class of a point x:

p(y:1|x):p(x|y:1)p(y:1> Bayes rule
p(x)
p(x|y=1)p(y=1) Marginal definition

~ p(xly=0)p(y=0)+p(x[y=1)p(y=1)

B 1
|+ P(xly=0)p(y=0)
p(x|y=1)p(y=1)
1
P(X|y:O)P<y:0)>)
p(x|y=1)p(y=1)

1+exp (log|(
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Logistic Sigmoid Function
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Predicting Classes with Gaussians

1y )= p(xy=0), ,  ply=0)
ply=1h)=ollog( 2 =1 e log (22200
/ =
Log-likelihood ratio Constant w.r.t x

- With our Gaussian data :

=o(log(p(x|y=0))—log(p(x|y=1))+const)

=o(—1/2(x—u,) = (x—u, )+1/2(x—u,) = (x—u,)+const)

=of(u,—1,) =" x+1/2(uy T e, — 1, ' ) +const )
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Logistic regression

e What did we learn ?

- For this data the log-likelihood ratio is linear

* Line defines boundary to separate classes
* Sigmoid turns distances from boundary into probability !

Red:y=0 Blue:y=1
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Logistic regression

- What if we ighore Gaussian assumption on data?
- Model :
p(y=1|x)=o(w"' x+b)=h(x;w)
 Farther from boundary w™x+b = 0, more certain
about class

* Sigmoid converts distance to class probability
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Logistic regression

p(y=1lx)=o(w’ x+b)=h(x;w)
1

T
—w X—b

1+e

This unit is the main building block of Neural Networks! »
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Logistic regression

« What if we ighore Gaussian assumption on data?
- Model : p(y=1|x)=oc(w' x+b)=h(x; w)

 With piEp(yi:ylxi)

p(yz'ZJ’|Xi):Bemou”i(Pi):<pi)yi(1—Pi)l_yi: P ?fyi:l

1-p;, ify;=0
 Log-likelihood :

_IDL_—IHH pl 1 pz)l Yi

~InL=) —yIno(w' x+b)—(1-y,)In(1— o(w" x+b))

Binary cross entropy loss function
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Gradient descent

 Likelihood function / Loss function L(06) defined over
a model parameters 0 (i.e w & b)

- To minimize L(0), gradient descent uses local linear
Information to iteratively move towards a (local) minimum.

- First order approximation around 6, (Taylor expansion):

~ 1
(0] =L(6,}+ €V, L(6,}+5- el
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Gradient descent

A minimizer of the approximation L(6¢) is given for :

V.L(6,+6)=0=V,L(6)+5 ¢

 The best improvement is for the step: e=—yV,L(6,)
 Model parameters can be updated iteratively by :

Ht+1_ Bt o y VHL ( Ht) ’;f .‘_'l‘\-:-ff“:-‘f“‘\
- 0, — initial parameters of the model L ' _}
« v - learning rate iy

- Important for convergence of the minimization
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Stochastic gradient descent

 Loss is composed of a sum over samples:
1 N
V9L<9):W Zizl V,L(y., h(x,,0))
- Computing gradient grows linearly with N

 Stochastic approach (SGB):

- Compute the gradient using a random sample (small size batch)
- Gradient is unbiased - on average it moves in correct direction
- Tends to be much faster the full gradient descent

==

Batch gradient descent Stochastic gradient descent
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 Too small a learning rate, convergence very slow

 Too large a learning rate, algorithm diverges

Small Learning rate Large Learning rate

o |\ o |\

S
/
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Feed Forward Neural Network

Hidden layer

d—  Composed of neurons
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Multi-layer Neural Network

 Multilayer NN
- Each layer adapts basis functions based on previous layer
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Neural Network Optimization Problem

Neural Network Model: h(x)=w' o(W'x)

Classification: Cross-entropy loss function

L(w,W')=2_ yIn(p)+(1-y)In(1-p)

Regression: Square error loss function

Liw,W')=5 3, (y,=h(x))

Minimize loss with respect to weights : w.W'
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Backpropagation

 Loss function composed of layers of nonlinearity :

L(¢"(...¢'(x)))
1. Forward step:

« Compute and save intermediate computations
§(...0'(x)
2. Backward step: oL _y 0¢; 0oL
a¢a j a¢;1 a¢;1+1

3.Compute parameter gradients: ;; _y 04" oL
ow" I ow’ 0 ¢

0o(x) j
° Why Singid ?T:O(X)(l_G(X))Easytocompute!

53
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Activation functions

« Started with sigmoid, but any function can be used

* Requirement:

1.0

- Easy/simple derivative

0.5F

- That can be expressed as
function of itself

« Examples:

- tanh, R S of. S —
- sigmoid, f 5 f
1.0 — 1/(1+e }
- ReLU —_ maX {O,X} l — 1:31111(;1-:}
-3 -2 ) 0 1 > 3

26/01/2023 C. Rappold - Intro to ML



ies
4-class classification
i
norm regularization
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Deep Neural Networks

input layer

hidden layer 1

hidden laver 2

hidden layer 3
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 As data complexity grows, need exponentially large number of neuronsin a
single-hidden-layer network to capture all structure in data

 Deep neural networks factorize the learning of structure in data across many

layers
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Demystify neural networks

* Full implementation of training of 2-layer NN :

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
x, y = randn(N, D_in), randn(N, D_out)
wl, w2 = randn(D_in, H), randn(H, D_out)

for t in range(2000):

h=1/ (1 + np.exp(-x.dot(wl)))
y_pred = h.dot(w2)

loss = np.square(y_pred - y).sum()
print(t, loss)

grad_y_pred = 2.0 * (y_pred - y)
grad_w2 = h.T.dot(grad_y_pred)
grad_h = grad_y_pred.dot(w2.T)

grad_wl = x.T.dot(grad_h * h % (1 - h)) “ Optlmlzatlon part:
gradient descent

W e orad via back propagation
w2 —= le-4 % grad_w2 F) F) EJ
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Cooking recipe in ML

 Get data (loads of them)
« Get good hardware

 Define the neural network architecture as a
composition of differentiable functions

 Optimize with (variants of) stochastic gradient descent

 But pitfalls to be aware of:
- Data quality : Garbage In » Garbage Out / Missing data ?
- Underfitting / Overfitting
- Simplicity don’t imply better generalization
- Appropriate evaluation metric
- Mistaking correlation for causation & confounding variables
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Any questions ?

christophe.rappold@csic.es
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