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• Nuclear Physics for radio-diagnostics: 
medical imaging (xCT, PET, NMR…)

• Nuclear Physics for radio-therapy: protontherapy

Applications in Medicine
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• Computerized Tomography with X-rays (xCT): 
Traditional diagnostics by X-rays transmission

à Good morphological image

• Positron Emission Tomography (PET): 
Use of radio-tracers and its accumulation in different organs in the body

à Good functional image
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Radiodiagnostics: xCT & PET



Computerized Tomography (CT)

X-rays CT (xCT)
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Source: Surgery reference web: 
https://surgeryreference.aofoundation.org/



Positron Emission
Tomography (PET)

Radiodiagnostics: xCT & PET
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Radiotracers:
FDG 

(FluoroDeoxiGlucosa) 
with 18F for example



PET/xCT combination: 
functional image with great
definition and morphological
quality

Radiodiagnostics: xCT & PET
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Radiodiagnostics: xCT & PET
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PET/xCT combination: 
functional image with great
definition and morphological quality



Radiodiagnostics: CT & PET
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PET/xCT combination: 
functional image with great
definition and morphological quality



PROTONTHERAPY
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Cancer
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Taken from L.M. Fraile

Cancer is a leading cause of death worlwide, accounting for nearly 10 million deaths in 2020 

(World Health Organization https://www.who.int/news-room/fact-sheets/detail/cáncer)



• Therapy with X- or g-rays
X-rays tubes, 60Co source or electron linear accelerator
(cheaper, less selective)

• Therapy with hadrons
accelerators (ciclotrons or synchrotrons) of protons or 12C 
(more expensive, very selective)

Radiotherapy
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• Intensity Modulated Radiation Therapy (IMRT) 
• 3D Conformal therapy
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Radiotherapy: 
X- or g-rays vs hadrons (p,12C)



• Hadrontherapy: use of p or 12C accelerated beams à very localized dose
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Red area:
Extra dosis 
applied to
the patient

Radiotherapy: 
X- or g-rays vs hadrons (p,12C)



Radiation treatments
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Proton vs Carbon ions:

• Bragg Peak (BP)

• Width of BP

• Tails beyond BP

Source: C K Ying et al 2017 J. Phys.: Conf. Ser. 851 012033



Medullary tumor
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nasopharyngeal carcinoma
X-rays

Deposited energy with
respect to depth:
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Radiotherapy: 
X- or g-rays vs hadrons (p,12C)



Medullary tumornasopharyngeal carcinoma
X-rays protons

Deposited energy with
respect to depth:
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Radiotherapy: 
X- or g-rays vs hadrons (p,12C)
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Pediatric medulloblastoma
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Radiotherapy: 
X- or g-rays vs hadrons (p,12C)



Protontherapy dose control

• Protons deposit dose in a very localised area

– A good control of dose deposition is required since it makes the 
difference between applying high dose to tumor or healthy tissue

– Treatment plans should be very accurate and precise

– A system of dose verification is needed
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Range Uncertainties
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Treatment plans take into consideration an uncertainty of 3.5 % of the range plus 1-3 mm

For example, 3.5%+3 mm implies 1 extra cm for a tumor at 20 cm depth

Source: H. Paganetti Phys. Med. Biol. 57 (2012) R99-R117

Reasons for range uncertainties:
• Organs motion
• Setup and anatomical 

variations
• Dose calculations
• Biological considerations



Dose verification
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Taken from L.M. Fraile



In operation since December 2019

From March-April 2020

• Currently, there are 98 protontherapy centers and, at
least, 29 under construction and 12 of hadrontherapy with
12C and 5 other under construction worlwide

• Protontherapy arrived recently to Spain with two centers
(in Madrid):

Quirónsalud y Clínica Universidad de Navarra.

https://www.cun.es/protonterapia

• 2 new centers in the Public Health System recently 
approved to be built in Cantabria and Cataluña 
(planned for 2025) : ElPais de 30 Abril 2021

https://www.quironsalud.es/es/centro-protonterapia

Hadrontherapy in Spain

https://www.cun.es/protonterapia
3https:/elpais.com/sociedad/2021-04-30/la-radioterapia-mas-puntera-aterriza-en-la-sanidad-publica-para-mil-ninos-enfermos-de-cancer-al-ano.html?fbclid=IwAR2pTg9hkZcqZ5ABoqCEnqfKQgDsSraogi1GSDGF9ur2793GviWLRehjHYA
https://www.quironsalud.es/es/centro-protonterapia


• C02 Ion beam, it produces ionized C2

• Linear Accelerator with b=v/c=0.1 

• Synchrotron accelerates C ions up to b=0.73

•Therapy with both, protons and heavier ions

•Treating patients since November 2009

•Approx.: 750 patients per year

•Treatment of tumors with difficult chirurgical
Access up to 30 cm deep

HIT: Center of therapy with ion beams in Heidelberg 
(Germany)



R&D IN PROTONTHERAPY
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PRONTO-CM project

• Joint project: UCM-CSIC-Ciemat

• 4 years: 2018-2021

• R&D in protontherapy: proton range verification and proton 
imaging
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IEM-CSIC in PRONTO

• Design a proton-CT scanner

• Built using Nuclear Physics instrumentation

25



The importance of proton-CT

Proton-therapy treatment plans are based on X-rays CT images (XCT)

–Maps of Hounsfield Units (XCT)    à RSP (Proton-therapy)
(relative stopping power)

(μà attenuation coefficients)

–Conversion induces uncertainties in proton ranges of ~3%

Using proton-CT (pCT) images: uncertainties can be reduced to < 1%

Challenge: design a pCT scanner providing high quality images
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Developing a prototype of pCT scanner – III Jornadas IFIMED/RSEF 2020

Conversion



Dose applied to patient

27

Absorbed dose for a head
• radiograph: 0.01 mGy
• X-ray CT: 30-50 mGy
• proton CT: ~1.3-1.4 mGy

Source: Robert P. Johnson et al. Rep. Prog. Phys. 81 (2018) 016701



Advantages of proton-CT vs. xCT

• Reduce uncertainties in proton ranges from 3% to <1%

• Avoid image artifacts originated by high-Z components
• Methalic elements such as dental implants, cardiac pacemaker, etc…

• More reduced dose to patient

• Generally speaking: lower spatial resolution but better density 
resolution
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proton  CT scanner
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Prototypes of pCT scanners
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Switzerland

USA
Japan

Italy

USA

UK

Italy

Italy

Source: Robert P. Johnson et al. Rep. Prog. Phys. 81 (2018) 016701



IEM-CSIC prototype of pCT scanner
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Area: 50 x 50 mm2

Segmentation: 256 3x3 mm2 pixels

• Phoswich: LaBr3 (4 cm) + LaCl3 (6 cm) in Array of four 27x 27mm2

• Energy resolution: 
• 3 % for 1173 keV g (60Co) 

• 3-5 % for 60 – 130 MeV protons
• decay time 16 ns

O. Tengblad et al. NIM A 704 (2013) 19-26

CALIFA Endcap Phoswich Array (CEPA4) 
pCT scanner

(DSSD)



Proof-of-concept: CMAM Experiment
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• Centro de MicroAnálisis de Materiales (UAM) 

• 10 MeV protons à thin “phantoms” ~1 mm

• Beam intensity ~1 nA

• 2 DSSDs detectors:
§ 60 µm
§ 500 µm

Primary Beam

Scattered Beam

24o

Detectors 
and phantom

Phantom 

Detector1 

Detector
2 

Scattering target



Proof-of-concept: CMAM Experiment
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“Phantoms”

2 Master theses from this Master 
InterUniversitario were defended in 
Univ. Sevilla in Sept 2019: 
Vicente García and Inma Posadillo

Experimental 
results

Hole

1 mm Al200 µm Al +
500 µm PVC

200 µm Al 500 µm PVC with
Holes of 4, 6 y 8 mm500 µm PVC

+ 200 µm Al

Geant4 
simulations



Future experiments
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Beam line Scat. target

Exp. chamber

Scattered beam
proton 
beam

Experiments to be performed in 2021 at:

1º- KVI-CART (Groningen, Netherlands) à

2º- CCB (Krakow, Poland) à

Higher beam energies: 50-230 MeV
Larger phantoms: from 60 mm to 200 mm thickness

Scattered
Proton beam
50-230 MeV

Objectives
• Properties of direct images 

(radiographs) (Single projections)

• Tomography of 3D objects
(Multiple projections): 
o test of reconstruct. algorithms
o evaluation of image properties

28-30 Junio
2021

4-6 Junio 
2021



Phantoms
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Single projection Multiple projections

• PMMA
• Aluminum

• Air
• Water

• Alcohol

Simple (2 inserts)

AlcoholWater

Derenzo

Top view

Spatial resolution • Sensitivity different 
materials

• Imaging spatial shapes

Reconstructed CT images

Simple (Cross) Derenzo-type

Aluminum
inserts

• Sensitivity different materials
• Imaging spatial shapes

Spatial resolution 

Radiograph mode

Materials



pCT scans: Geant4 simulations
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Scattered
proton
beam

DSSD1 PhantomDSSD2 CEPA4

Rotations

Geant4 geometry
Image obtained at 0º

37 projections
in 5º steps from 0 to 180º

Reconstructed Image
using Filtered-Back 
Projection algorithm (FBP)

100 MeV proton beam
Extensive studies with simulations done and ongoing to optimize our setup

Reconstruction

algorithms

Alcohol Water AlcoholWater



Reconstruction algorithms
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FBP SART (1 iter)

2º steps 0-180º Images are corrected by Uniform

TFM of Pedro Martínez Moreno 
(Máster InterUniversitario en Física Nuclear)



Preparation of Experimental setup
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Current status of experimental setup:

Beam

Experimental tests ongoing at 
IEM-CSIC Lab to use new digital 
electronics and test detectors.

Experiments scheduled for June 2021:
-Krakow (Poland): 4-6 June
-Groningen (Netherlands): 28-30 June

Temática del TFM de Carlos Ballesteros (InterUniversitario) y Amanda Nerio (Erasmus Mundus en Física Nuclear)

TFMs de 
Carlos Ballesteros (Máster InterUniversitario en Física Nuclear)

Amanda Nerio (Máster Erasmus Mundus en Física Nuclear)



Summary

• Imaging techniques: xCT and PET

• Treatment: radiotherapy with X-rays vs. protontherapy
– Protontherapy is more selective, less harmful to surrounding tissue
– Better control of dose applied 
– Range verification is required
– Range uncertainties
– pCT helps reducing uncertainties
– IEM working in PRONTO project to build a pCT prototype
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Thanks for your attention!
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Questions? 

If later a question disturbs you 
contact me by email: jose.briz@csic.es


