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Introduction
Calorimeters are a crucial component for most detectors mounted on modern colliders. Their tasks include identifying and measuring the energy of photons and neutral hadrons, recording
energetic hadronic jets, and contributing to the identification of electrons, muons, and charged hadrons. To fulfill these many tasks while keeping costs reasonable, the calorimeter construction
requires good and thoughtful balancing with other components of the detector.

Much harder operation conditions during LHC’s high luminosity Run 5 and beyond (Upgrade II conditions) imply new technological and computational challenges. This requires optimization of
technologies, layouts, readouts, reconstruction algorithms to achieve the best overall physics performance for the limited cost.

LHCb detector
LHCb is one of four major LHC experiments and provides:

• precise tests for Standard Model verification

• detailed studies of Charm and Beauty physics

• precise measurements of CP violation effects

LHCb ECAL
The current ECAL is based on Shashlik-type modules of 3
granularities, and contains 1536/1792/2688 cells in its in-
ner/middle/outer regions, respectively.

LHCb calorimeter wall

Several technological options for the upgraded calorimetry are
foreseen. The most severe requirements for radiation tolerance
can be met by SpaCal modules consist of longitudinal fi-
bres acting both as scintillator and light-transporting medium.

Baseline configuration (left) and the first level of optimisation of
the cell sizes for LHC Upgrade II conditions (right). Upper right

quarter of the calorimeter wall is shown.

Figures of merit
The performance of the calorimeter consists of:

• Radiation tolerance to sustain the expected lifetime span;

• Energy and spatial resolution for good photon recon-
struction and electron identification;

• High granularity and longitudinal segmentation to facil-
itate better precision, both spatial and in energy, which
in turn improves reconstruction algorithms;

• Timing resolution enough to facilitate pileup suppression
in high-occupancy areas as well as better matching of
separate signal components.

However, the ultimate goal for the optimization process is to
achieve the dependency of the physics performance on the cost
of the configuration of the detector under study.

Models in the optimization cycle

Model Primary
implementation

Surrogate
impl.

Detector
response GEANT4 GAN

Detector
reconstruction NA ML regressor

Performance
metric aggregator

Physics significance
vs. cost Not needed

Models are required to be differentiable with respect to θmodel

in vicinity of the current optimization point. For non-
differentiable models the differentiable machine learning (ML)
based surrogates can be used.
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A general pipeline for the calorimeter optimization includes several steps. Blue blocks indicate data processing pipeline steps; pink callouts
represent configurations and conditions for pipeline steps; yellow blocks close the optimization loop.

Workflow steps
• Selected event samples, both signal and background, are used to initiate an optimization cycle for comparing the performance

in terms of signal recovery and background suppression;

• the calorimeter is usually installed downstream of the detector, so a propagation of events from their origin to the calorimeter
is necessary. This step is dependent on the properties of the elements of the detector between origin and calorimeter.
Additionally, if the calorimeter detector has a non-homogeneous configuration, the details of the global geometry are to be
accounted for in this step for the optimization to be based on physics performance quality metrics;

• The construction technology used for the individual calorimeter modules is a central point for the detector R&D. To evaluate
the impact of a choice of construction technology, we need to simulate its effect on observable event characteristics. This is
done using response simulation models, typically based on GEANT4. The details of the calorimeter technology used drive
such simulation;

• The behaviour of the front-end electronics is another important contribution to the physics quality of the detector. Although
the properties driving the behaviour are hard to simulate, good data samples may be obtained from beam or bench tests;

• A reconstruction algorithm is absolutely necessary to evaluate the quality of converting the detector response into the
physics objects;

• Physics quality metrics may be calculated using reconstructed objects and it can be used as a target function for the
optimization procedure;

• All aspects of the calorimeter may be optimized: the details of the calorimeter technology, the geometrical layout, and the
possible reconstruction algorithms.

Evaluation of the physics performance
To evaluate the physics performance of a particular configuration for a possible future calorimeter detector, one needs to run the
optimization cycle described above. A good fine-tuning of the individual blocks is important to properly propagate the properties
of the configuration under study to the ultimate physics performance. For the regular operation of a stable detector, these blocks
are carefully tuned based on the actual detector configuration. In contrast, for the R&D of a new detector, many different
possible configurations are studied simultaneously during the optimization stage. Nevertheless, reasonable representations of the
simulation and reconstruction steps, which are tuned for each of the configurations studied, are necessary for inferring consistent
conclusions about the physics performance of these configurations. This is a time consuming work, if done manually. Fortunately,
these studies use well-labelled data sets either from MC simulation or from test beam measurements. Thus surrogate models
may be built and trained on labelled data using regular ML approaches. This makes it possible to speed up model building for
different pipeline steps. Importantly, such training may be automated and requires minor expert supervision.

Conclusion
• LHCb ECAL optimization is a good use case for the generic problem of comprehensive optimization of the complex physics

detector;
• Optimization pipeline is established and used to practically find optimal configurations in reduced phase space of considered

parameters to satisfy LHCb experiment needs;
• Black box optimization is straightforward but requires huge resources in case of multidimensional parameter space;

• Differentiable optimization is a promising approach to speed up the optimization cycle. It requires all involved models to
be explicitly differentiable otherwise, ML dynamically trained surrogates might be a solution.


