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Outlook

● ML : particle identification
● GNN : particle tracking 
● CNN : alpha decay in emulsion
● GAN : simulate emulsion reaction
● Mask R-CNN : hypernuclei finding in emulsion
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ML for Particle Identification
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Particle identification : Random Forest

● ALICE experiment :
– PID with TPC and TOF
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Particle identification : Random Forest

QGP : Quark Gluon Plasma
– Hadron: described QCD (quarks & gluons)
– When heated or compressed 

→ Overlap each others
– Quark and gluons move around in

relatively large volume
– Phase transition between QGP and

hadron gaz.
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Particle identification : Random Forest

● Features of the collisions at ALICE :

Bjorken 
representation

208 Pb + 208 Pb √ sNN = 2.76 TeV
p + p √sNN = 7 TeV

p + 208 Pb √sNN = 5.02 TeV
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Particle identification : Random Forest

● ALICE experiment :
– PID with TPC and TOF
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Particle identification : Random Forest

● Models of dE/dx vs p/q & β vs p/q

● Considered features:
–

– Multiplicities in detectors

– DCA to primary vertex
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Particle identification : Random Forest

● Random Forest :
– Create Decision Trees :

● Each decision tree → optimized on a random subset of features 
& only access to a random set of the training data

● increases diversity in the forest → more robust prediction

– Final classification → vote 
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Particle Identification : Random Forest

● Results:
Kaon class

Efficiency = TP / P Purity = TP / (TP+FP)
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DL in Particle Tracking
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Particle tracking : Graph Neural Network

In accelerator-based neutrino oscillation experiments at Fermilab:

Proton beam (120 GeV) → π+ beam (10GeV) : π
+
→μ

+
+νμ
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Particle tracking : Graph Neural Network

● The DUNE experiment: Liquid Argon TPC
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Particle tracking : Graph Neural Network

● Type interaction :
– Neutrino oscillation                      Interact in LArTPC
– Electromagnetic shower :

g → e- e+ → g g  → …
– Tracks (p,π,μ)

νμ/ ν̄μ→νe/ ν̄e
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Particle tracking : Graph Neural Network

● Graph neural network:
– CNN + network embedding.

● CNN → receptive field in local spatial features
● Networks & graph → generalize to arbritary object

– CNN : conv filter → locality / Graph : adjacency matrix → object relationships
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Particle tracking : GNN

● Achieved efficiency and purity : > 99% !
True event Edge clustering Classification & edge selection
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Particle tracking : GNN

● Hypernuclear study:

neutron proton

d-quark u-quark

hyperon (Λ)

s-quark : distinguishable from
u- and d-quark

Lifetime~ 10−10 ps

Hypernucleus

Micro-lab for study
Baryon interactions
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● Hypernuclear production in heavy ion collisions:
– NN → ΛKN Eth ~ 1.6 GeV : Beam > Eth : available at GSI (2 AGeV)

– Coalescence of Λ in spectator fragment
● same velocity than projectile: Lorentz Boosted
● study Hypernuclei in flight 

Particle tracking : GNN
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Particle tracking : GNN

● Hypernuclear study our WASA-FRS experiment:

6 Li(@2GeV /u)+12C→Λ

3 H , Λ
4 H ,nnΛ+K+

Fragments+Hadrons

Λ

3 H→
3He+π

−

Λ

4 H→
4He+π

−

nnΛ→n+d+π
−
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● Hypernuclear study in our WASA-FRS experiment:

Particle tracking : GNN

6 Li(@2GeV /u)+12C→Λ

3 H , Λ
4 H ,nnΛ+K+

+Fragments+Hadrons

Λ

3 H→
3He+π

−

Λ

4 H→
4He+π

−

nnΛ→n+d+π
−
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● Study of Hypernuclei in our WASA-FRS experiment:

Particle tracking : GNN

- π (perfect) - π (valid) Other (perfect) Other (valid)

98.09 %  99.92 % 97.05 %  99.07 %
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DL in emulsion analysis 
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Finding hypernuclei in emulsion : MaskCNN

● J-PARC E07 experiment :
– J-PARC : Japan Proton Accelerator Research Complex



11/05/2021 C. Rappold – Intro to ML
24

Finding hypernuclei in emulsion : MaskCNN

● J-PARC E07 experiment : at K1.8 beam line 

0 3 m

Emultion/SSDs

HyperballX

Collimator

Q13

Q12

D4

BH2
Diamond Target/FBH

BAC1/2

BC4

BC3

Q11

Q10

MS2

Q9

BFT
BH1

KURAMA

PVAC/FAC

SDC1SCH

SDC2
SDC3

TOF
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Finding hypernuclei in emulsion : MaskCNN

● J-PARC E07 experiment
– Study of double-strangeness hypernuclei
– Hybrid methods : Triggered detectors + nuclear emulsions 

1.8 GeV/c 
K- beam

X-Target

SSD K+

Triggers by the observation of (K-, K+) reactions
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Finding hypernuclei in emulsion : MaskCNN

● Scanning methods :
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Finding hypernuclei in emulsion : MaskCNN

● Current outcome of E07:
– Triggered events : Ξ- identified and tracked by detectors + 

outgoing K+ → estimation of the position of stopped Ξ- in 
emulsion

– Visual inspections by an optical microscope →  around the 
estimated stop position

– Small portion of emulsion plates analyzed → to much human 
workload !
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Finding hypernuclei in emulsion : MaskCNN

● Current outcome of E07:
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Finding hypernuclei in emulsion : MaskCNN

● Still in those 1300 emulsion plates :
– K- beam interacted directly with the nuclei of the emulsions

→ produce hypernuclei (single & double)

– It was proposed to search for hypertriton (3
ΛH)

– But : no additional information → need to scan everything !

→ 1.4 billion images / emulsion : 110 TB x 1300 → 140 PB

→ 560 years to analyze this
– Background :

● Beam tracks & Nuclear fragmentation : 10000 & 1000 / mm2

● Use of machine learning to find those events !

→ To be done in 3 years  
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Finding hypernuclei in emulsion : MaskCNN

● alpha decay events (calibration) : CNN
Training data (real images)

CNN Scalar value

300x300 pixels

alpha

others

1124

1879319917 images

Noise: others

Other 
interaction

Cross Dust
50 μm

α decay

Target

Purity improved by 7 timesJ. Yoshida, et al., NIM A, 989 (2021) 164930
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Finding hypernuclei in emulsion : MaskCNN

● Alpha decay events:
– Spontaneous decay chain of long-

lived radioisotopes such as uranium 
and thorium in the emulsion

– calibration for density / space 
homogeneous

● Convolutional Neural Network
– ResNet-50

● Let have a small digression for 
some explanations
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Finding hypernuclei in emulsion : MaskCNN

● What is a CNN :
– When the structure of  data includes “invariance to translation”, a 

representation meaningful at a certain location can / should be used 
everywhere

– Covolutional layers build on this idea, that the same “local” 
transformation is applied everywhere and preserves the signal structure

– 1D Discrete Convolution:
● u is called Convolutional kernel of width k
● Scan across data and multiply by kernel elements 

x∈ℝ
M , u∈ℝ

n ,∀ i∈[0 ...M−n+1 ] :(x∗u)i=∑ j=0

n−1
xi+ ju j
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● Convolution Layer: preserve spatial structure

Finding hypernuclei in emulsion : MaskCNN

32

32

3

5x5x3 filter

32x32x3 image

Height

Width

Depth

32

32

3 1

28

28

activation maps

6

28

28

 6 5x5 filters
Each 28x28 (=784) parameters

Fully Connected Layer : 
32x32x3 x size Hidden (784) → 2.4M

(x∗u)i , j=∑c=0

C−1

∑n=0

h−1

∑m=0

w−1

x c , n+i ,m+ juc ,n ,m
i× j∈(H−h+1)×(W−w+1)
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Finding hypernuclei in emulsion : MaskCNN

● Examples :
(LeCun et al. 1998)

(Krizhevsky et al, 2012)AlexNet

LeNet-5

(Simonyan and Zisserman, 2014)

VGGNet
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Finding hypernuclei in emulsion : MaskCNN

● Back to ResNet:
– 34 layers :

– Classics : ResNet – 18, -34, -50, 101, 152 (layers)

Params :25M Params :60M 
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Finding hypernuclei in emulsion : MaskCNN

● CNN classifier : Alpha decay detection

● Precision = TP / TP + FP     Recall = TP / TP + FN 
● 7 times more precision !
● Conventional : 

– 2489 out of 46948 events, including 201 true alpha decay
● CNN classifier:

– 350 alpha-decay candidates,including 201 true alpha-decay

Precision Recall # of candidates

Conventional method 0.081 +- 0.006 0.788 +- 0.056 2489

CNN classifier 0.547 +- 0.025 0.788 366 +- 18

model's ability to detect Positive samples
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Finding hypernuclei in emulsion : MaskCNN

● Finding hypertriton :
– Needs of training data ! But none has been found 

→ generating event from simulations !
– Problem : how to simulate nuclear emulsion ?!

● GAN : Generative adversarial networks
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Finding hypernuclei in emulsion : MaskCNN

● Simulated hypertriton : GAN + Geant4
– pix2pix (Image-to-Image Translation with Conditional 

Adversarial Nets)
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Finding hypernuclei in emulsion : MaskCNN

● Simulated emulsion :

Mix

Image
Converter
pix2pix

Events (Geant4)
→ simulation of 
weak decay

Background (real)
→ from emulsion plate

Synthesized images

Image
Converter
pix2pix
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Finding hypernuclei in emulsion : MaskCNN

● Simulated event : hypertriton via GAN

● hypertriton decay at rest : 3He + π- back-to-back
● Q-value fixed: length of pion 28 mm of 3

ΛH vs 42 mm for 4
ΛH

Simulated Real
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Finding hypernuclei in emulsion : MaskCNN

● Search for hypertriton-like decay: 
– Mask R-CNN : Instance Segmentation

Region Proposal Network

feature extraction 
Network

Network head for 
bounding-box recognition 

Backbone architecture:
Networks inside

Ex: ResNet, ResNeXt, 
Feature Pyramid Network
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Finding hypernuclei in emulsion : MaskCNN

● Search for hypertriton-like decay:
– Training on simulated and generated event

● “Real” images of simulated emulsion
● Masks of the instance segmentation of the decay

Simulation
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Finding hypernuclei in emulsion : MaskCNN

● Search for hypertriton-
like decay:
– Training on simulated and 

generated event → done 
– Analyze the real emulsion 

images

→ Give us the image and 
and mask – bounding box 
of what the algorithm 
found :

3

Score = 0.996

Score = 1.000
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Finding hypernuclei in emulsion : MaskCNN

● Search for hypertriton-like decay:

10 μm
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Finding hypernuclei in emulsion : MaskCNN

● The Mask R-CNN is not perfect :
– Need people to cross check the dataset selected by the NN

Full Data of
1 area
(2M)

Lshape or other
(10k)

Lshape or other
(6k)

Lshape or other
(400)

Lshape & proper 
length He

(200)

3
Λ
H like with

pion
(2.5)

3
Λ
H or 4

Λ
H

(0.5)

3
Λ
H

(0.1)

Mask 
RCNN

CNN

First eye
inspection

Second eye
inspection

First eye
inspection

Microscope
inspection

Microscope
inspection

Microscope
inspection
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Any questions ?
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