DREB2022 - Direct Reactions with Exotic Beams

Contribution ID: 290

Type: Poster

Investigating cross-shell interactions at the N=28 shell closure through 47K(d,p)48K with MUGAST+AGATA+VAMOS.

Tuesday 28 June 2022 17:25 (5 minutes)

The region around the magic numbers N = 28 and Z = 20 is of great interest in nuclear structure physics. Moving away from the doubly-magic isotope ⁴⁸Ca, in the neutron-rich direction there is evidence of an emergent shell gap at N = 34 [1], and in the proton-deficient direction, the onset of shape deformation suggests a weakening of the N = 28 magic number [2]. The ⁴⁷K(d,p)⁴⁸K reaction is uniquely suited to investigating this region, as the ground state configuration of ⁴⁷K has an exotic proton structure, with an odd proton in the $\pi(1s_{1/2})$ orbital, below a fully occupied $\pi(0d_{3/2})$ orbital [3]. As such, the selective neutron transfer reaction (d,p) will preferentially populate states in ⁴⁸K arising from $\pi(1s_{1/2}) \otimes \nu(fp)$ cross-shell interactions. The implications of this extend both down the proton-deficient N = 28 isotonic chain, where these interactions are expected to dominate the structure of the exotic, short-lived ⁴⁴P nucleus [4], and across the neutron-rich region, where the relative energies of the $\nu(fp)$ orbitals is the driving force behind shell evolution.

The first experimental study of states arising from the interaction between $\pi(1s_{1/2})$ and the orbitals $\nu(1p_{3/2})$, $\nu(1p_{1/2})$ and $\nu(0f_{5/2})$ has been conducted, by way of the 47 K(d,p) reaction in inverse kinematics. A beam of radioactive 47 K ions was delivered by the GANIL-SPIRAL1+ facility, with a beam energy of 7.7 MeV/nucleon. This beam was estimated to be > 99.99% pure, with a typical intensity of 5 × 10⁵ pps, and was impinged upon a 0.13 mg/cm² CD₂ target. The MUGAST+AGATA+VAMOS detection setup [5] allowed for triple coincidence gating, providing a great amount of selectivity. An analysis based both on excitation and gamma-ray energy measurements has revealed a number of previously unobserved states, and preliminary differential cross sections for the most strongly populated of these states will be presented.

[1] D. Steppenbeck et al., Nature 502, 207 (2013).

[2] O. Sorlin and M.-G. Porquet, Prog. Part. Nucl. Phys. 61, 602 (2008).

[3] J. Papuga et al., Phys. Rev. C, 90 034321 (2014).

[4] L. Gaudefroy, Phys. Rev. C, 81, 064329 (2010).

[5] M. Assié et al., Nucl. Instrum. Methods A 1014, 165743 (2021).

Topic

Experiment

Author: PAXMAN, Charlie James (University of Surrey (GB))

Presenter: PAXMAN, Charlie James (University of Surrey (GB))

Session Classification: Poster session