DREB2022 - Direct Reactions with Exotic Beams

Contribution ID: 199 Type: Oral contribution

Consistent description of sequential and simultaneous contributions to the 11Li(p,t)9Li transfer reaction within a full three-body model

Wednesday 29 June 2022 09:40 (20 minutes)

A considerable amount of current lively research is devoted to the study of neutron Borromean nuclei, very intriguing exotic systems characterized by a diffuse two-neutron density distribution extending far beyond a compact core. Among them, the nucleus ¹¹Li deserves special attention, owing to the intensive theoretical and experimental work dedicated to this system in the last decades.

The marked three-body structure of $^{11}{\rm Li}$ renders three-body models particularly suitable to study its ground state and continuum properties. These models have also been very useful for the interpretation of reactions involving $^{11}{\rm Li}$. One of these models has been recently proposed and successfully applied to the analysis of one-neutron transfer [J. Casal {\it et al.}, PLB767 (2017) 307] and quasi-free (p,pn) reactions [M. Gomez-Ramos {\it et al.}, PLB 772 (2017) 115]. A key issue of this model is the inclusion of the $^9{\rm Li}$ spin, which leads to a splitting of the $J^\pi=1^+,2^+$ resonances and $J^\pi=1^-,2^-$ virtual states.

In this contribution, we employ this model to reanalyze the two-neutron transfer data for $^{11}\text{Li}(p,t)^9\text{Li}$ at 3 MeV/u [I. Tanihata {\it et al.}, PRL 100, 192502 (2008)]. We use the second order DWBA method, and include both sequential and simultaneous contributions. For the former, the required $\langle ^{11}\text{Li}|^{10}\text{Li}\rangle$ overlaps are consistently evaluated from the three-body wave function of ^{11}Li . Our results will be compared with those obtained with previous analyses ignoring the spin of ^9Li .

Topic

Theory

Authors: BURRELLO, STEFANO; CASAL, Jesús (Univ. Padova); LAY VALERA, José Antonio (Dpto. de Física Atómica, Molecular y Nuclear, Universidad de Sevilla); MORO, Antonio (Universidad de Sevilla, Spain)

Presenter: BURRELLO, STEFANO **Session Classification:** WED1