DREB2022 - Direct Reactions with Exotic Beams

Contribution ID: 209

Type: Oral contribution

Study of the magicity of the 13B nucleus and mixed configurations in 12Be via QFS knockout reactions.

Thursday 30 June 2022 15:20 (20 minutes)

The 13 B $(p,pn)^{12}$ B and 13 B $(p,2p)^{12}$ Be reactions have been used at about 470 MeV/A with CH2 and C targets to study the shell structure of two N = 8 isotones.

The 13 B nuclei were produced by the FRS-GSI facility and transmitted to the R3B-LAND beam line where the γ -sphere Crystal Ball and the neutron detector Land were used to determined the cross section of the bound and unbound states in 12 B and 12 Be nuclei, in which the energy and J values of almost all populated states were previously assigned.

In case of a strong N = 8 shell closure in the 13 B nucleus, the $0p_{1/2}$ neutron orbital (the normal configuration) is expected to be fully occupied, with a negligible fraction of occupancy for the valence $1s_{1/2}$ and $0d_{5/2}$ orbitals (the intruder one). In such a case, the neutron removal reaction will not populate states of negative parity constructed with these intruder configurations. From the small content of intruder 1s0d states that we found, it is deduced that the magicity at N = 8 is strongly preserved in 13 B, similarly to the doubly magic nucleus 14 C, before suddenly collapsing in 12 Be where the intruder content is by far dominating. Our results are globally in agreement with those extracted from the 13 B(p, d) 12 B transfer reaction [1].

From the 13 B(p,2p) 12 Be reaction, we obtained the sum of the 0_1^+ and 0_2^+ isomeric state, the feeding of the 2_1^+ bound state as well as the one of the 2_2^+ resonance state [2]. By using the wave functions of the 0_1^+ and 0_2^+ states proposed by Chen et al. [3], and that of 13 B deduced from our study of 13 B(p,pn) 12 B reaction, we find that the one-proton removals reactions to the 0_1^+ and 0_2^+ states in 12 Be have similar cross sections. As for the 2_2^+ state, we have observed its decays to the ground and first excited states of 11 Be, as well as to the ground state of 10 Be by 2n emissions. This clarifies the controversy on its decay and nature from the works of Fortune [4] and Smith et al.[5]. The cross section to the 2_2^+ state is about 8 times larger than that of the 2_1^+ state. We therefore conclude that the two 0^+ states exhibit more mixing than the 2^+ does, and that the 2_2^+ state is a candidate for the spherical band in 12 Be.

- [1] W. Liu et al., Phys. Rev. C 104, 064605 (2021)
- [2] A. Kamenyero, "Structure of 12 Be via the study of multi-neutron decays and two-neutron correlations", PhD thesis, University of Caen (2022)
- [3] J. Chen et al., Phys. Lett. B 781, 412 (2018)
- [4] H. T. Fortune, Eur. Phys. J A 52, 11 (2016)
- [5] J. K. Smith et al., Phys. Rev. C 90, 024309 (2014)

Topic

Experiment

Authors: Mr BARRIERE, Antoine (for the R3B Collaboration); Dr KAMENYERO, Armel; Dr REVEL, Aldric; SOR-LIN, Olivier (GANIL); AND THE R3B COLLABORATION

Presenter: Mr BARRIERE, Antoine (for the R3B Collaboration)

Session Classification: THU3