

Detection of high-energy protons and γ-rays using a novel LaBr₃(Ce)-LaCl₃(Ce) phoswich array

E. Nácher, A. Perea, G. Ribeiro, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC, Madrid

M. Mårtensson, A. Heinz, T. Nilsson Chalmers University, Göteborg

FAIR

Outlook

- Introduction: experimental motivation
- Precedents: small cylindrical phoswich and PSA
- CEPA4, a bigger phoswich array
- Summary and conclusions

FAIR **Experimental motivation: CALIFA**

CALorimeter for In-Flight gAmma-rays and protons

RB Experimental motivation: CEPA

γ

p

Detect with good energy resolution & high peak efficiency (not so easy!!):

→ E < 30 MeV
→ E < 700 MeV

CALIFA Endcap Phoswich Array: CEPA

FAIR

FAIR

Phoswich:

- 2 high-resolution scintillators optically coupled and with a common readout
- Different decay time \rightarrow possible PSA applications to decouple the energy deposited in both crystals
- Added value: depth of interaction capabilities \rightarrow Doppler-shift correction & imaging (?)

Materials	∆E/E (% at 662 keV)	Light yield (photons/keV)	Decay time (ns)	$\lambda_{emision}$
LaBr ₃	2.9	63	16	380 nm
LaCl ₃	3.8	49 Master Interun	28 iversitario 2018/19 -	350 nm

• Test with standar γ sources and analog electronics

FAIR

• Test with high-energy γ -rays at CMAM and analog electronics

- Test with high-energy protons at TSL and digital electronics
 - 180 and 150 MeV protons

FAIR

Test with high-energy protons at TSL and digital electronics

FAIR

- Proton slowed down in the two xstals and stopped in the 2nd one (LaCl₃)
- Proton slowed down in the two crystals and escaped from the 2nd one (or n knock-out)
- Proton slowed down in the 1st crystal and escaped from it
 - Proton slowed dowd and stopped in 1st crystal (or p knock-out)

FAIR

Test with high-energy protons at TSL and digital electronics

Geant4 simulations:

R CEPA4: a bigger phoswich array

CEPA4: a bigger phoswich array

- Readout: 4 Hamamatsu 8-stage PM Tubes R5380 (recently changed to R7600U-200: shorter & square-shaped)
- A DSSD detector (5x5 cm²) at the entrance face (in vacuum if necessary) to measure the entrance point of the protons or to perform β -del. charged particle / β -del. γ spectroscopy
- A VME CAEN Flash ADC (V1742) to digitize the signals.

Centrum Cyklotronowe Bronowice

Data Analysis at 3 different levels:

- 1 Total Integral vs Height
- 2 Solve a set of linear equations to find E_{LaBr3} and E_{LaCl3}

(→ See: O. Tengblad, T. Nilsson, E. Nacher et al., NIM A 704 (2013) 19)

3 – Project on the appropriate lines depending on the energy region (calibration?)

FAIR

(\rightarrow Analyze the energy resolution & the response after the total punch-through)

FAIR

FAIR

1 - Integrals: tail vs total

FAIR

Master Interuniversitario 2018/19 - OT

FAIR

FAIR

CEPA 2018

Summary & Conclusions

1 – CEPA4, a new high-resolution phoswich array with Good optical insulation and moisture-proof so far, even with no Aluminum casing for the individual crystals.

- 2 CEPA4 has been tested with proton beams (70-230 MeV).
- 3 The PSA procedure has been tested and has provided good results even beyond the total punch-through energy. We have a reliable method to calibrate the detector by regions.
- 4 The energy resolution for high-energy protons
- 5 With a DSSD at the front entrance of the setup it can be used for β -del proton / β -del α / β -delayed γ spectroscopy

THANK YOU!!

E. Nácher, A. Perea, G. Ribeiro, J. Sánchez del Río, O. Tengblad Instituto de Estructura de la Materia – CSIC, Madrid

M. Mårtensson, A. Heinz Chalmers University, Göteborg

