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Motivation

Background:
Our group is developing gaseous detectors of nuclear and electron
recoils, uniquely capable of providing 3D recoil direction ; 40L detect & /8
40L thesis detector & T = ecwgr

Directionality is desirable:

(https://indico.cern.ch/event/1358339/contributions/5899430/ )
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Exploring deploying detectors at SNS Oak Ridge 00 ] Helum

Events/year

Can provide valuable information in discerning new physics from CEVNS

experiments (Abdullah et. al. 2003.11510, Sierra et. al. 2103.10857 )

Solar Neutrino Spectroscopy (Lisotti, O’hare et. al. 2404.03690) 1054 @2 08 o4 065 OB 07 08 68 i
cos6,

DM searches / pointing / etc. (Vahsen, O’hare, Loomba 2102.04596 )
P J (v Abdullah et. al.



https://indico.cern.ch/event/1358339/contributions/5899430/
https://arxiv.org/abs/2003.11510
https://arxiv.org/pdf/2103.10857
https://arxiv.org/pdf/2404.03690
https://arxiv.org/abs/2102.04596

Directional Recoil Detection in Gas TPCs
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 Gas TPC are the only candidate
technology for directional detection of
low energy (order 1-100 keV) recoils.

* Present two techniques for optimizing
directionality:
1. Predicting the angular resolution
of electrons in gas

2. Probabilistic deep learning for 3D
direction

Focus on electrons (more complex) here



Angular Resolution of Electron Recoils

Two first-order effects influencing angular resolution:

Before diffusion

o Multiple scattering of the electron (or nucleus)
o Effective point resolution of the detector (diffusion + readout resolution)
Multiple scattering dominates at longer fit length, point resolution dominates

at shorter fit lengths.
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Multiple scattering

PDG Review of Particle Physics “Passage of Particles
Through Matter”

Multiple scattering through small angles

e z 13.6MeV [ x 2>
= 1 :
O /3 Bop X, + 0.038In( X, 52)

This formula is actually a fit for simulations of heavy particles.
It does not work for electrons.

Following the same procedure for electron we obtain.
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Effective Point Resolution

® The Multiple Scattering formula alone is insufficient, need to consider effective point
resolution for a more complete picture

® Conversion from point resolution to angular resolution

Effective point resolution:
Angular resolution — 1 \/— .t | Diffusion and readout
o_plane . o lzam,y,z
PR —
¥ VvV N

® \We combine the point resolution and multiple scattering effects in quadrature

1 13.1MeV 12W
plane ~__ 2 2p—3 a= b= —
O total — \/a’ T+ b2z—3. V3 Bepv' X, Oxly/z dE/dx

3-D tracking in a miniature time projection chamber https://doi.org/10.1016/j.nima.2015.03.009
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https://doi.org/10.1016/j.nima.2015.03.009

Results

70 keV electron recoils in 70% He 30% CO2
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The optimal track length is well predicted
The angular resolution near the optimal length is
well predicted

This provides a quick way to estimate the angular
resolution of electron recoils as
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® This formula can be used for design

optimization.

® We are working on experimental validation



Probabilistic Deep Learning for 3D Direction

Simulations:

10° electron recoils at 40,45,50 keV using

DEGRAD
70% He : 30% 002 at 20 Celsius and 760 Torr

(a) Raw Degrad simulation (b) Processed simulation

Recoils are generated isotropically with known -
]
|

true direction
o
Diffusion drawn uniformly between 160-466 ym ; I

Binned into (500 pm)® voxels

(¢) Voxilized simulation



Deep probabilistic 3D angular regression

Inputs Feature maps Feature maps
120x120x120 32@120x120x120 40@120x120x120 Feature maps Feature maps
— Feature maps 50@29x29x29 10@12x12x12 Feature maps

Feature maps
50@58x58x58 30@14x14x14 10@6x6x6

Architecture:

e Everyevent has 1,728,000 \

feat U reS . SubMConv3d %\ .’__:_',, - <3| Flatten
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features are non-zero
Unit vector

e Sparsity is common in

highly-segmented 3D data and it is

essential to take advantage of it

e Dual-head architecture for

heteroscedastic regression




Deep probabilistic 3D angular regression

Loss function

e Derived from the Kent / von
Mises-Fisher distribution

e Requires approximations to stabilize
training

e This is the first probabilistic deep
learning framework for predicting

3D directions
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Deep probabilistic 3D angular regression

https://arxiv.org/abs/2403.15949
Accepted by Machine Learning: Science and technology

This framework solves 3 problems at once:

e |t determines the Head/Talil

e [t significantly improves angular resolution 40 keV electron recoils in He:Co2
e |t estimates uncertainty accurately 0.7
. . i 030y
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https://arxiv.org/abs/2403.15949

Conclusion

» Directional detection is challenging at low energies!
* We developed two techniques to maximize directionality
« A formula which predicts the best achievable angular
resolution given recoll energy, gas properties, and the
effective point resolution (paper in preparation)
» A probabilistic deep learning method for fitting complex 3D

recoil tracks (paper accepted)
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Ongoing: Experimental Validation

Sr-90

PHYSICAL CHARACTERISTICS
HALF-LIFE: 28.8 years

- g :

DECAY EMISSIONS
Includes Y-90 emissions under the assumption of secular equilibrium
Gammas / X-rays Betas / Positrons (+) / Electrons* Alphas
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Thank you!

majd@hawaii.edu




