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Introduction

Theory uncertainty dominated by QCD:
Is QCD contribution under control? 
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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total SM prediction deviates from exp. by ~3σ
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Introduction

Outline:

Hadronic vacuum polarization:
basic ideas & results from DSEs & BSEs

LbL scattering:
microscopic decomposition, quark loop, gauge invariance
Mini-review:  GE, Fischer, Heupel, Williams,  1411.7876,  AIP Conf. Proc. 1701 (2016) 

Structure of the LbL amplitude:
permutation group S4, kinematic phase space, tensor decomposition
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verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)
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The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].
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shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2
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is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors
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where F1, F2 are dimensionless functions of Q2 only. Via
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.

(96)

Dyson-Schwinger / Bethe-Salpeter approach: 

ab-initio, but (systematically improvable) truncations

symmetries are exact: Poincaré invariance, chiral symmetry, electromagnetic gauge invariance

successful applications in other systems: QCD’s n-point functions, 
meson & baryon spectra, elastic & transition FFs, tetraquarks, QCD phase diagram, . . .

Review:  GE, Sanchis-Alepuz, Williams, Alkofer, Fischer,  1606.09602,  PPNP 91 (2016)

GE, Fischer, Heupel,  1505.06336,  PRD 92 (2015)
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Hadronic vacuum polarization

Vector current correlator from lattice QCD:

Spectral decomposition:

Pole in momentum space ⟹
exp. decay in Euclidean time

i
2m+2P

···

λ

∑| →λ〉〈λ|
λ

∑

mτ−e→)y−x(Π

� � )y(νj)x(µjS−e]ψ, A¯ψ,[D
∫

=〉0|)y](ψνψ γ¯) [x](ψµψ γ¯[T|0〈) =y−x(µνΠ

)y(νj)x(µj

Re

Im

2Q

2Q

ρ

′ρ

Re

Im

2Q

2Q
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Hadronic vacuum polarization

Vector current correlator from lattice QCD:

Timelike side determined by 𝑒⁺𝑒⁻ → hadrons ⇒ 
spacelike correlator from dispersion relations:

Re

Im

2Q

2Q

ρ

′ρ2

~  Im

� � )y(νj)x(µjS−e]ψ, A¯ψ,[D
∫

=〉0|)y](ψνψ γ¯) [x](ψµψ γ¯[T|0〈) =y−x(µνΠ

)y(νj)x(µj

𝐺𝑥 𝑥𝑦 𝑦

𝐺
𝑥�

𝑥�

𝑦�

𝑦�

〉0|)2y(σψ)1y(ρψ̄¯ )2x(βψ)1x(αT ψ|0〈ρσαβ lim   
x→ix
y→iy

=

= =

µγ νγ

�
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Hadronic vacuum polarization

Microscopic decomposition:

Need to know dressed quark propagator and quark-photon vertex:

� � )y(νj)x(µjS−e]ψ, A¯ψ,[D
∫

=〉0|)y](ψνψ γ¯) [x](ψµψ γ¯[T|0〈) =y−x(µνΠ

)y(νj)x(µj

𝐺𝑥 𝑦

𝐺
𝑥�

𝑥�

𝑦�

𝑦�

〉0|)2y(σψ)1y(ρψ̄¯ )2x(βψ)1x(αT ψ|0〈ρσαβ lim   

〉0|¯ )2x(βψ)1x(αT ψ|0〈

x→ix
y→iy

=

= =

µγ νγ

exact!

𝐺= = )y(νj
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Bethe-Salpeter

Bethe-Salpeter equation for quark-photon vertex: Analogous for bound states:

𝐾= +

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

-1
=

-1
+

-1 -1
= ++ + + . . .+

infinitely many coupled equations,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system

𝐾=
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QCD’s n-point functions

Quark propagator

Dynamical chiral 
symmetry breaking 
generates ‘constituent-
quark masses’

Agreement between lattice, 
DSE & FRG within reach
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Williams, Fischer,
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Heupel, PRD 93 
(2016)

(→ see e.g. Con�nement 2016 talks: Sternbeck, 
       Williams, Huber, Blum, Mitter, Cyrol, Campagnari, . . .)
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Bethe-Salpeter

Bethe-Salpeter equation for quark-photon vertex:

𝐾= +

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

Kernel can be derived systematically (nonperturbative!):

-1
=

-1
+

-1 -1
= ++ + + . . .+

-1
=

=

=
-1

+ +

= + + + + +

+

Quark propagator

-1)
)2p(M+p/i)2p(A

Dynamical chiral 
symmetry breaking 
generates ‘constituent-
quark masses’
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Quark mass 
function [GeV]:
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Review: GE, Sanchis-Alepuz, 
Williams, Alkofer, Fischer,  
Prog. Part. Nucl. Phys. 91 (2016)
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Bethe-Salpeter

Bethe-Salpeter equation for quark-photon vertex:

𝐾= +
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Rainbow-ladder:
effective gluon exchange

Maris,  Tandy, PRC 60 (1999)
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Bethe-Salpeter

Bethe-Salpeter equation for quark-photon vertex:

𝐾= +

Depends on QCD’s n-point functions as input, 
satisfy DSEs = quantum equations of motion

Kernel can be derived systematically (nonperturbative!):

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)

infinitely many coupled eqs.,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system
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Quark propagator

Calculated in complex plane:
singularities pose restrictions
(no physical threshold!)
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Review: GE, Sanchis-Alepuz, 
Williams, Alkofer, Fischer,  
Prog. Part. Nucl. Phys. 91 (2016)

GE, Alkofer, Krassnigg, Nicmorus,  PRL 104 (2010),  GE, PRD 84 (2011),
Sanchis-Alepuz, Fischer,  PRD 90 (2014), . . .

Spectroscopy

Pion is Goldstone 
boson: 𝑚�� ~ 𝑚�

Light meson spectrum beyond rainbow-ladder:

Baryons from three-body BSE:
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Induced transverse part: 
can it simulate ρ-meson effects?
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+

[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+

[
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Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):
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photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
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role of electromagnetic gauge invariance in determining their structure, and their
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vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
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Hadronic vacuum polarization

Hadronic vacuum polarization:
Dispersion relations and DSEs (almost) identical
on spacelike side, although timelike structure different:
in rainbow-ladder, bound states without widths 

e.g. Pion em. 
form factor:

but we only need 
spacelike region 
for g-2! 

HVP (1.3 %)
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10−10×= 676µa

Similar in hadronic form factors: 
spacelike properties + hadronic poles reproduced, 
but missing meson-baryon interactions

Separation into Ball-Chiu + transverse part
in any electromagnetic process!
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that

-2300

-2500

-2700

-2900

M(cqq)
(MeV)

Λc

1/2+

1/2−
3/2−

5/2+

Σc

1/2+

3/2+

Ξc

1/2+

1/2+

3/2+

1/2−
3/2−

Ωc

1/2+

3/2+

Λb

1/2+

Σb

1/2+
3/2+

Ξb

1/2+

Ωb

1/2+

M(bqq)
(MeV)

- 5600

- 5800

- 6000

- 6200

FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

𝜋, 𝜂, 𝜂’

LbL amplitude: model results 
Bijnens 1995,  Hakayawa 1995,  Knecht 2002,  Melnikov 2004,  Prades 2009,  Jegerlehner 2009,  Dorokhov 2011, Pascalutsa 2012, Pauk 2014, Colangelo 2015, . . .

Exact expression:
GE, Fischer,  PRD 85 (2012),  Goecke, Fischer, Williams, PRD 87 (2013)

=
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exchange
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
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fj τµ
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]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
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2
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+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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but full Ball-Chiu vertex problematic
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FIG. 35 The light hadron spectrum of QCD. Horizontal
lines and bands are the experimental values with their decay
widths. The lattice results are shown by solid circles. Vertical
error bars represent the combined statistical and systematic
error estimates. π, K, and Ξ masses input quantities.

The idea is to link, via the analytic properties, the
perturbative domain of QCD, where calculations can be
done exactly, and the non-perturbative domain, which
can be described in terms of a few basic constants. These
can be adjusted forming a few physical quantities, which
can be used to calculate other quantities.

i. Lattice QCD Here, QCD is reformulated as a field the-
ory in a discretized phase-space and solved using very
astute and powerful techniques which require, however,
expensive computing means. In the domain of hadron
spectroscopy, the best-known applications of lattice QCD
are those dealing with glueballs and hybrid mesons, and
also scalar mesons, but recently the physics of baryons
has also been studied. Figure 35 shows the remark-
able achievements of lattice QCD. Pion masses down to
190MeV were used to extrapolate to the physical point
and lattice sizes of up to 6 fm (Dürr et al., 2008).

Lattice techniques have also been applied to single-
charm baryons (Lewis et al., 2001) and even to double-
charm baryons (Brambilla et al., 2004; Flynn et al.,
2003).

C. Phenomenology of ground-state baryons

1. Missing states

Almost all ground-state baryons containing light or
strange quarks and at most one heavy quark are now
identified. Still missing are the isospin partners Σ0

b and
Ξ0
b and the spin excitations (S = 3/2) of the recently

discovered Ξb and Ωb.
The existence of Ξ+

cc(3519) is uncertain. Its predicted
mass (Fleck and Richard, 1989; Körner et al., 1994) is
about 100MeV larger and recent calculations give even
larger mass values. As compared to a naive equal-spacing
for p(940), Λ+

c (2286) and Ξcc, the first correction is that
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FIG. 36 Comparison of the excitation energy single-charm
and single-beauty baryons above the Λc (Λb mass. The
quantum numbers are deduced from the quark model (Wohl,
2008a). For the Ωb both DØ (top) and CDF (bottom) results
ares shown as dotted lines.

Ξcc is shifted down by the heavy–heavy interaction in the
chromoelectric sector, see Eq. (26). However, both p and
Λc are shifted down by the favorable chromomagnetic
interaction among light quarks.

As the (bc̄) meson has been observed, one should be
able to detect (bcq) baryons with charm and beauty, with
two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.

2. Regularities

The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-

𝜋, 𝜂, 𝜂’

Goal: calculate LbL amplitude directly

Two strategies: 

Either way, we first need to understand structure of LbL amplitude!

Quark Compton vertex,
enters in Compton scattering

= =

Calculate quark loop, approximate T-matrix by meson exchanges 
→ calculate two-photon currents: 

Calculate quark loop + T-matrix explicitly:
gauge invariant, but more difficult

Problem: only sum (without approximations!) is gauge invariant;
how to deal with gauge artifacts?

GE, Fischer,  PRD 87 (2013)

Goecke, Fischer, Williams,  PRD 83 (2011)

𝑇+

10−10×(1.2)= 8.1µa
PS
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two S = 1/2 states in the ground state, and one S =
3/2 state. Next will come the double-beauty sector, and
ultimately, baryons with three heavy quarks.
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The masses exhibit a smooth behavior in flavor space,
which is compatible with the expectation based on po-
tential models incorporating flavor independence. More-
over, “heavy quark symmetry implies that all of the mass
splittings are independent of the heavy quark flavor”,
to quote (Isgur and Wise, 1991). A comparison is made
on Fig. 36 of the known single-charm and single-beauty
baryons. The comparison suffers from the small number
of beauty baryons but it is clearly seen that the cost of
single-strangeness excitation ΞQ − ΛQ is very similar for
Q = c and Q = b.

For the double-strangeness excitations, the Ωb(6165)0

of DØ is problematic. Most models predict Ωb with
mass of about 6050MeV, 110–120MeV lower than the
observed mass. The measurement by CDF, 6054MeV, is
in better agreement with the expectations.

3. Hyperfine splittings

The hyperfine splitting is also varying smoothly from
one configuration to another. Again, this is compati-
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Goal: calculate LbL amplitude directly

Quark Compton vertex,
enters in Compton scattering
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LbL amplitude

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
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and the VCS limit where the generalized polarizabilities are
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).
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This is a circular 45◦ cone in η+ direction, with η− and
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

Amplitude is Bose-symmetric. With symmetric tensor basis:
⇒ FFs only depend on symmetric combinations of variables

But this is not automatic ⇒ choice of basis matters!

Amplitude is gauge invariant ⇒ transverse to 𝑝��,  𝑝��, 𝑝�� and 𝑝��. 
 

⇒ Calculating LbL amplitude means determining
    136 FFs which depend on 6 variables . . .

Any constraints?

⇒ should be separated into 
    “gauge part” and transverse part:

⇒ With ‘minimal’ tensor basis free of kinematic singularities:
    FFs free of kinematic singularities and zeros,
    only singularities are physical poles and cuts  ⇒  ‘simple’

)p, q, k(i
µνρστ). . .(if
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

3 independent 
momenta:  

6 Lorentz invariants: 
k·k, q·q, p·, p2, k2, q2p

⊥   Γ GΓ  =
physical,
transverse part
(41 tensors)

vanishes
by gauge
invariance

Γ+
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Only physical poles and cuts?

Form factors:
no kinematic 
constraints

Helicity amplitudes
[10⁻³𝐺𝑒𝑉      ]�1/2

Example:  𝛾𝑁 → 𝑁*(1535) helicity amplitudes:
CLAS data:  Aznauryan et al., PRC 80 (2009)
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Gauge invariance

Simplest example: hadronic vacuum polarization

transverse 
part

„gauge part“:
vanishes due to

gauge invariance

Analyticity ⇒  a, b cannot have poles at Q  = 0 (intermediate massless particle, but        = 1PI)

Transversality ⇒  Ward identity: (not                    !!!)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
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This is a circular 45◦ cone in η+ direction, with η− and
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We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Gauge invariance

Simplest example: hadronic vacuum polarization

transverse 
part

„gauge part“:
vanishes due to

gauge invariance

Analyticity ⇒  a, b cannot have poles at Q  = 0 (intermediate massless particle, but        = 1PI)

Transversality ⇒  Ward identity: (not                    !!!)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .
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With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
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, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Transverse projection alone not sufficient:

What if calculation breaks gauge invariance?

⇒  bad: kinematic singularities

⇒

Must project onto full transverse + gauge basis, subtract gauge part.
Also useful if gauge invariance is violated by more than cutoff (e.g., incomplete calculation).
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Gauge invariance

Simplest example: hadronic vacuum polarization

transverse 
part

„gauge part“:
vanishes due to

gauge invariance

Analyticity ⇒  a, b cannot have poles at Q  = 0 (intermediate massless particle, but        = 1PI)

Transversality ⇒  Ward identity: (not                    !!!)
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
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,
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or, vice versa,
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Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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Compton scattering

Tensor decomposition for CS amplitude:

Tarrach‘s construction: 
   

   write down all possible tensors (# = 32), 
   apply transversality constraints,
   divide and subtract poles ⟹ 18 transverse tensors

transverse part,
18 tensors

gauge part,
14 tensors

-2
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

GE & Fischer,  PRD 87 (2013),  GE & Ramalho,  in preparation

Tarrach, Nuovo Cim. A28 (1975)

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)

’

RCS

VCS

FW
D

GP

FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
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+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
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upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y
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+
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’

GE & Fischer,  PRD 87 (2013),  GE & Ramalho,  in preparation

3

B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
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so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√
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+ − η2
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,
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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We can also localize the various kinematic limits in this
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• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):
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Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.
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Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
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2

, Z =
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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Transverse Compton FFs
depend on 4 variables, but
in T+G basis they scale 
with single variable!

At hadronic level: Born terms alone not gauge invariant

gauge invariant GE & Fischer,  PRD 87 (2013)
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Use offshell nucleon-photon vertex, project onto G+T basis 
⇒ violation of gauge invariance mostly affects gauge part,
    transverse CFFs only weakly sensitive, still good prediction!
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Induced transverse part: 
can it simulate ρ-meson effects?
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+

[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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relevant Green functions that encode this interaction are the quark-photon vertex
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role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.
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FIGURE 1. (Color online). The scalar polarizabilities of the proton. Magenta blob represents the PDG summary [15]. Experi-
mental results are from Federspiel et al. [16], Zieger et al. [17], MacGibbon et al. [18], and TAPS [19]. ‘Sum Rule’ indicates the
Baldin sum rule evaluations of αE1 + βM1 [19] (broader band) and [20]. ChPT calculations are from [10] (BChPT—red blob) and
the ‘unconstrained fit’ of [21] (HBChPT—blue ellipse).

proton Compton scattering, where these polarizabilities prominently appear, the calculations show that upon inclusion
of O(p4) contributions the HBChPT achieves roughly the same results as O(p3 + p4/∆) BChPT [13], albeit with a
loss of some predictive power due to the appearance of two new LECs.

The present status of the BChPT, HBChPT, as well as “more empirical" extractions of proton polarizabilities, as
summarised in [14], is shown in Fig. 1. Note the significant discrepancy of the BChPT prediction with the current
Particle Data Group values, which thes far has been attributed to a sizeable underestimate of uncertainty in the TAPS
and subsequently PDG values.

3. RELEVANCE: HYDROGEN LAMB SHIFT

The electric polarizability of the proton is responsible for a zero-range force in atoms, which lead to a shift in the
S-levels:

∆E(pol.)
nS = −4αem φ 2

n (0)

∞∫

0

dQ

[√
1+

Q2

4m2
�

− Q
2m�

]
αE1(Q2), (1)

where αem is the fine-structure constant, φ 2
n (0) = α3

emm3
r /(πn3) is the square of the hydrogen wave-function at the

origin, m� is the lepton mass and mr is the reduced mass: mr = Mpm�/(Mp +m�). The effect of magnetic polarizability
is suppressed.

The effect in Eq. (1) is of order α5
em; there is one αem implicit in the polarizability. It is therefore of the same order as

the effects of 3rd Zemach radius and can make an impact on "charge radius puzzle" [22, 23], i.e., the 7σ discrepancy
between the proton charge radius extraction based on either the electronic (eH) or muonic (µH) hydrogen Lamb shift.
The factor in the square brackets of Eq. (1) acts a soft cutoff at the scale of order of the lepton mass m�, and hence the
proton polarizability contribution in µH is expected to be bigger than in eH. How much bigger?

The transfer-momentum dependence of αE1 is inferred from the forward doubly-virtual Compton scattering, and
hence is not accessible in a direct experiment. Only the sum, αE1(Q2)+βM1(Q2), is accessible through a generalized
Baldin sum rule. The Baldin sum rule has been evaluated in several works leading to the so-called ‘inelastic’
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables
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}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
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ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.
Figure 2: Ratio of proton electric to magnetic form factors as extracted using Rosenbluth
(LT) separation [11] (squares) and polarization transfer measurements [16, 18] (circles).
Figure adapted from Ref. [12].

In a series of recent experiments at Jefferson Lab [16, 17, 18, 19, 20, 21, 22, 23, 24, 25], the polarization
transfer (PT) technique has been used to accurately determine the ratio GE/GM up to Q2 = 8.5 GeV2.
In addition, there have been complementary measurements using polarized targets at MIT-Bates [26]
and Jefferson Lab [27]. The results, illustrated in Fig. 2, are in striking contrast to the ratio obtained
via LT or Rosenbluth separations, showing an approximately linear decrease of R with Q2 which is in
strong violation of the Q2 scaling behavior (see also Refs. [1, 2, 28, 29]).

The discrepancy between the LT and PT measurements of GE/GM has stimulated considerable
activity, both theoretically and experimentally, over the past decade. Attempts to reconcile the mea-
surements have mostly focused on improved treatments of radiative corrections, particularly those
associated with two-photon exchange, which can lead to additional angular (and thus ε) dependence
of the cross section. In the following sections we discuss experimental efforts to better understand the
discrepancy, and then describe theoretical efforts to compute TPE corrections and assess their impact
on various observables.

3 Experimental observables and measurements

3.1 Verification of the discrepancy

The striking difference between Rosenbluth [30] and the early polarization transfer [16, 18] measure-
ments of the proton electromagnetic form factors shown in Fig. 2 led to significant activity aimed at
understanding and resolving this discrepancy. It was noted early [16] that there was significant scatter
between the results of different Rosenbluth extractions [11, 31, 32, 33, 34], as illustrated in Fig. 3,
suggesting that the problem was related to the cross section measurements. At high Q2, GE yields only
a small, angle-dependent correction to the cross section, leading to the possibility that a systematic
difference between small- and large-angle measurements could yield large corrections to GE/GM , which
would increase in importance with increasing Q2. It was therefore argued that the observed difference
may have been due to some experimental error in one or more of the cross section measurements that
significantly change the high Q2 extractions of GE . Thus, the first step was a careful examination of the
cross section data to determine if the observed discrepancy could be explained by problems with one
or two experiments, or resolved by adjusting the normalization of some data sets within the assumed
uncertainties.
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B. Kinematics and definitions

The nucleon Compton amplitude Γµν(p, Q′, Q) de-
pends on three independent momenta. We will alterna-
tively use the two sets {p, Q, Q′} and {p, Σ, ∆} which
are related via

p = 1
2 (pi + pf ) ,

Σ = 1
2 (Q + Q′) ,

∆ = Q − Q′ = pf − pi , (8)

with the inverse relations

pi = p − ∆
2 ,

pf = p + ∆
2 ,

Q = Σ + ∆
2 ,

Q′ = Σ − ∆
2 .

(9)

With the constraints p2i = p2f = −m2 the Compton am-
plitude depends on four Lorentz invariants. We work
with the dimensionless variables

η+ =
Q2 + Q′2

2m2
, η− =

Q · Q′

m2
, ω =

Q2 − Q′2

2m2
,

λ =
p · Σ

m2
=

p · Q

m2
=

p · Q′

m2
,

(10)

or, vice versa,
{

Q2

Q′2

}
= Σ2 +

∆2

4
± Σ · ∆ = m2 (η+ ± ω),

Q · Q′ = Σ2 − ∆2

4
= m2 η−,

(11)

so that the Compton form factors in Eq. (3) are dimen-
sionless functions ci(η+, η−, ω, λ). The variables η+ and
η− are even under photon crossing and charge conjuga-
tion, whereas λ and ω switch signs (see Eq. (??) below).
We work with Euclidean conventions but all relations be-
tween Lorentz-invariant quantities, such as the Compton
form factors that we derive in Tables I, II and V, are the
same in Minkowski space.

The variables η+, η− and ω also admit a simple geo-
metric understanding of the phase space, cf. Fig. 2. The
spacelike region that we need to integrate over in order to
extract two-photon corrections to observables is subject
to the constraints

t > 0, σ > 0, −1 < Z < 1, −1 < Y < 1 (12)

where t, σ, Z and Y are the ‘spacelike’ variables intro-
duced in Ref. [1]:

t =
∆2

4m2
, σ =

Σ2

m2
, Z = Σ̂ · ∆̂ , Y = p̂ · Σ̂T . (13)

Here, a hat denotes a normalized four-momentum (e.g.,

Σ̂ = Σ/
√

Σ2) and the subscript ‘T’ stands for a transverse
projection with respect to the total momentum transfer
∆. These variables are related to the ones in Eq. (10) via

t =
η+ − η−

2
, σ =

η+ + η−
2

, Z =
ω√

η2
+ − η2

−
,

λ = −Y

2

√
ω2 + η2

− − η2
+

√
1 +

2

η+ − η−
.

(14)
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FIG. 2: Compton scattering phase space in the variables η+,
η− and ω (alternatively: τ , τ ′, η−, or t, σ, ω.) The interior of
the cone is the spacelike region that is integrated over. Real
Compton scattering (RCS) lives on the η− axis and virtual
Compton scattering (VCS) on the plane τ ′ = 0. The bound-
ary of the cone contains the forward limit at t = 0 (FWD)
and the VCS limit where the generalized polarizabilities are
defined (GP, τ ′ = 0 and η− = 0).

The first three constraints in Eq. (12) entail

− η+ < η− < η+, ω2 + η2
− < η2

+ . (15)

This is a circular 45◦ cone in η+ direction, with η− and
ω as the x and y variables. The opposite corners of the
cone are spanned by the {σ, t} and {τ, τ ′} axes because
from Eq. (11) we also have

τ =
Q2

4m2
=

η+ + ω

4
, τ ′ =

Q′2

4m2
=

η+ − ω

4
.

A cross section through the planes of fixed t leads to the
upper panel of Fig. 4 in Ref. [1].

We can also localize the various kinematic limits in this
plot:

• Real Compton scattering (RCS):

Q2 = Q′2 = 0 ⇒ η+ = ω = 0.

• Virtual Compton scattering (VCS):

Q′2 = 0 ⇒ η+ = ω.

• Generalized polarizabilities:
Q′µ = 0 ⇒ η+ = ω, η− = λ = 0.

• Forward limit: ∆µ = 0 ⇒ η+ = η−, ω = 0.

• Polarizabilities: η+ = η− = ω = λ = 0.

⊥   Γ GΓ  =
physical,
transverse part
(41 tensors)

vanishes
by gauge
invariance

⇒  FFs have no kinematic singularities or zeros, 
     only physical poles and cuts

⇒  effectively scale with single variable: simple

⇒  broken gauge invariance affects G, not T:
     even incomplete calculations are predictive

Existing examples of such bases:

1 vector boson:     scalar or fermion vertex (nucleon-photon, quark-photon, quark-gluon, . . .)
2 vector bosons:   HVP, 2-photon currents, Compton scattering
3 vector bosons:   three-gluon vertex
4 vector bosons:   LbL, four-gluon vertex??

   transverse
   no kinematic singularities
   permutation-group
   singlets
   minimal powers 
   in photon momenta

Γ+
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Structure of the LbL amplitude

Arrange the 24 permutations of            into multiplets:

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

2

The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±
i = P±

(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ

1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ

2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ

3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1, −1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , A A , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di × Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D × D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (A D), where

ε =

(
0 1

−1 0

)
⇒ ε (A D) =

[
s

−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.

2
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ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
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corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
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{u, v, w} to obtain a common transformation law.1
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bination ε (A D), where

ε =

(
0 1

−1 0

)
⇒ ε (A D) =

[
s

−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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The remaining 18 elements are reserved for the triplets.
If we generalize Eq. (4) to

a±
i = P±

(
f
(i)
1 − f

(i)
2 + f

(i)
3 − f

(i)
4

)
,

b±i = P±
(
f
(i)
1 − f

(i)
2 − f

(i)
3 + f

(i)
4

)
,

c±i = P±
(
−f

(i)
1 − f

(i)
2 + f

(i)
3 + f

(i)
4

)
,

(6)

and further define (λ = ±)

(φ1)
λ
1 = λ aλ

1 ,

(φ2)
λ
1 = λ bλ2 ,

(φ3)
λ
1 = λ cλ3 ,

(φ1)
λ
2 = aλ

2 ,

(φ2)
λ
2 = cλ1 ,

(φ3)
λ
2 = bλ3 ,

(φ1)
λ
3 = aλ

3 ,

(φ2)
λ
3 = cλ2 ,

(φ3)
λ
3 = bλ1 ,

(7)

then we can cast the triplets in a common form:

T ±
i =




√
2
3 (φ1 + φ2 + φ3)

±
i

1√
3

(φ2 + φ3 − 2φ1)
±
i

(φ2 − φ3)
∓
i


 . (8)

The doublets and triplets transform as

P12 Di = MDi ,

P23 Di = M′ Di ,

P34 Di = MDi ,

P12 T ±
i = ±H T ±

i ,

P23 T ±
i = ±H′ T ±

i ,

P34 T ±
i = ±H′′ T ±

i ,

(9)

where the two-dimensional representation matrices of the
permutations P12, P23 and P34 are given by

M =

(
−1 0

0 1

)
, M′ =

1

2

(
1 −

√
3

−
√

3 −1

)
(10)

and the three-dimensional ones by H = diag(1, 1, −1),

H′ =
1

2




2 0 0

0 −1 −
√

3

0 −
√

3 1


 ,

H′′ =
1

3




−1 −
√

8 0

−
√

8 1 0

0 0 3


 .

(11)

In principle it would have been sufficient to state the
transformation behavior under P12 and P1234 since all
permutations can be constructed from these two ele-
ments. Since P1234 = P12 P23 P34, the representation ma-
trix for P1234 in the doublet case is given by MM′ M, and
by ±HH′ H′′ for the two types of triplets. The triplets
corresponding to different Young diagrams transform un-
der inequivalent representations: the representation ma-
trices for the T −

i differ by a minus sign from those of the
T +
i , and it is not possible to rearrange the triplet entries

{u, v, w} to obtain a common transformation law.1

1 The representation matrices in Table 3.2 of the van Beveren lec-

B. Product representations

The next step is to construct all possible product rep-
resentations. The strategy is to find suitable products of
two elementary representations (S, A, Dj and T ±

i ) which
also satisfy the transformation law of Eq. (9).

• Symmetric singlets transform trivially with the
’representation matrix’ 1. The possible combina-
tions are

S S , A A , Di · Dj , T ±
i · T ±

j , (12)

where (·) is the usual dot product for vectors:

D · D′ := aa′ + ss′ ,

T · T ′ := uu′ + vv′ + ww′ .
(13)

That these combinations are singlets follows from
the orthogonality of the representation matrices.

• Antisymmetric singlets transform under −1. They
are obtained from

S A , Di × Dj , T ±
i · T ∓

j , (14)

with the antisymmetric product

D × D′ := as′ − sa′ . (15)

• Doublets can be constructed in various ways. S D
trivially produces a doublet, and so does the com-
bination ε (A D), where

ε =

(
0 1

−1 0

)
⇒ ε (A D) =

[
s

−a

]
A . (16)

The combination of two doublets or two triplets
also produces doublets:

Di ∗ Dj , T ±
i ∗ T ±

j , ε
(
T ±
i ∗ T ∓

j

)
, (17)

where we defined the (∗) operation as

D ∗ D′ :=

[
as′ + sa′

aa′ − ss′

]
,

T ∗ T ′ :=

[
vw′ + wv′ +

√
2 (uw′ + wu′)

ww′ − vv′ +
√

2 (uv′ + vu′)

]
.

(18)

ture notes follow if one writes instead of Eq. (3):

T +
i =




u
−v
w



+

i

, T −
i =




w
v
u



−

i

, Dj =

[
s
a

]

j

,

however at the price that Eqs. (8)–(11) and the notation for the
product representations become slightly less compact.
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• Antisymmetric singlets transform under −1. They
are obtained from
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• Doublets can be constructed in various ways. S D
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]
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also produces doublets:
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

6 Lorentz invariants form singlet      , doublet     , triplet 0S +TD

3 independent momenta:  

S4 multiplets

Bose symmetry:

6 Lorentz invariants: 

k·k, q·q, p·, p2, k2, q2p
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µνρστ). . .(if
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136∑
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Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)
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P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241
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FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)




•
•
•




=i
+T 



•
•
•




=i
–T

]

•
•

[
 =jD

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

S

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
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FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

Notes on the photon four-point function

I. PERMUTATION GROUP

A. Permutation-group multiplets

The permutation group S4 consists of 4! = 24 elements.
Each permutation of an object f1234 can be reconstructed
from two group elements, a transposition P12 and a 4-
cycle P1234. (The former interchanges the indices 1 ↔ 2,
whereas in the latter each index is replaced by its neigh-
bor on the right: 1 → 2, 2 → 3, 3 → 4, 4 → 1.) For
example, one has

P23 = (P1234)
2 P12 P1234 P12 ,

P34 = P12 (P1234)
2 P12 (P1234)

2 P12 .
(1)

This leads to the Cayley graph in Fig. 1 which repre-
sents the group manifold as a geometric structure made
of squares and hexagons. The squares contain the ele-
ments that are connected to each other by 4-cycles, for
example

f1234
P1234−−−→ f2341

P1234−−−→ f3412
P1234−−−→ f4123 . (2)

In total there are six squares with four elements each.
They are connected to each other by transpositions P12

which generates the hexagons. The two permutation
chains in Eq. (1) then correspond to paths along the Cay-
ley diagram. Instead of P12 and P1234 it is also common
practice to span the group by the transpositions P12, P23

and P34 which leads to a similar Cayley graph.
One can rearrange the 24 permutations in terms of

multiplets that transform under the irreducible represen-
tations of the S4. In terms of Young diagrams, one has
the following possibilities:

S T +
i Dj T −

i A

S and A are the singlets which are completely symmet-
ric or antisymmetric. The doublets Dj (j = 1, 2) form
a two-dimensional irreducible subspace. The triplets T +

i
and T −

i (i = 1, 2, 3) transform under inequivalent irre-
ducible representations and thereby form two different
three-dimensional subspaces. In the following we will de-
note their elements by

T ±
i =




u
v
w



±

i

, Dj =

[
a
s

]

j

. (3)

For the explicit construction of the multiplets it is help-
ful to group the 24 permutations of an element f1234 into

1234

2341

3412

4123
3142

2431

4213

1324

2314

1243

4132

4231

1342

3124

3214

2413

4321

1432

1423

4312

3241

2134 3421

2143

FIG. 1. Cayley graph for the group S4, also known as ’per-
mutohedron of order 4’. (Based on a figure from Wikipedia.)

the following three subclasses (s, t, u channel):

f (1) =




f1234
f3412
f2143
f4321


, f (2) =




f3241
f1423
f4132
f2314


, f (3) =




f4213
f2431
f3124
f1342


.

Together with the transpositions P12, each class defines a
closed path in Fig. 1 that contains eight elements. Now,
take the sum of the entries in each column vector and
(anti-)symmetrize with P± = 1 ± P12:

ψ±
i = P±

4∑

k=1

f
(i)
k , i = 1, 2, 3 . (4)

The resulting six combinations constitute the singlets and
doublets, which have the same structure as the multiplets
in S3 (cf. Eq. (??) in Ref. [? ]):

S = (ψ1 + ψ2 + ψ3)
+

,

A = (ψ1 + ψ2 + ψ3)
−

,

D1 =

[
(ψ2 − ψ3)

−

− 1√
3

(ψ2 + ψ3 − 2ψ1)
+

]
,

D2 =

[
1√
3

(ψ2 + ψ3 − 2ψ1)
−

(ψ2 − ψ3)
+

]
.

(5)

⟶ ⟶
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

GE, Fischer, Heupel,
PRD 92 (2015)
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FIG. 5. Different kinematic points in the doublet triangle (bottom row) and the corresponding spacelike regions within the
triplet tetrahedron (top row). The alignments are the same as in Figs. 3 and 4. A rotation ϕ → ϕ ± 2π

3
will also rotate the

tetrahedron. The leftmost panel (r = 0) contains both the central limit (R = 0) and the symmetric limit (R = 2, the corners
of the spacelike volume).

be weakest in the corners of the doublet triangle (where
the triplet volume shrinks to the point R = 0) and
strongest at the centers of its sides (where the triplet
extends to the edges of the tetrahedron at R = 2).

Generally, while the spacelike interior of the triangle
and the tetrahedron is free of singularities, one- and two-
photon poles will therefore influence the behavior of the
dressing functions from the timelike domain. The case
of the four-gluon vertex is similar: one expects soft-
gluon divergencies at the tetrahedron’s surface (analo-
gous to the three-gluon vertex) but also glueball bound-
state poles that form triangles in the doublet plane.

C. Special momentum configurations

We conclude this section by discussing some special
momentum configurations.

(i) Uniform soft limit: all momenta vanish simulta-
neously, p = q = k = 0, and consequently also all Lorentz
invariants are zero. This is the limit S0 = 0.

(ii) Central limit: the Mandelstam momenta have
the same length and are orthogonal to each other:

p2 = q2 = k2 = 4
3 S0, ω1 = ω2 = ω3 = 0 . (78)

Therefore only S0 �= 0, whereas a = s = u = v = w = 0.
This is the center of the triangle and the tetrahedron.
The doublet and triplet radii vanish, r = R = 0, and all
photon virtualities are equal: xi = S0.

(iii) Symmetric limit: all Mandelstam momenta are
equal: p = q = k, which entails p1 = p2 = p3 = −3p4.
Therefore also all Lorentz-invariants are identical:

p2 = q2 = k2 = ω1 = ω2 = ω3 = 4
3 S0 . (79)

This entails a = s = v = w = 0 but u = −2, and hence
r = 0, θ = 0 and R = 2 (or equivalently R̂ = 1). The
photon virtualities are

x1 = x2 = x3 = 1
3 S0, x4 = 3S0 . (80)

(iv) Soft-photon limit: one external momentum
vanishes, e.g. p4 = 0 and therefore p + q + k = 0. This
is the phase space relevant for the g − 2 calculation. The
variables p2, q2 and k2 are still independent but

ω1 = 1
2 (p2 − q2 − k2),

ω2 = − 1
2 (p2 − q2 + k2),

ω3 = − 1
2 (p2 + q2 − k2) .

(81)

In terms of doublet and triplet variables, S0, a and s
remain independent whereas

u = 1, v = −
√

2s, w = −
√

2a .

This is the lower face of the tetrahedron in Fig. 4 whose
remaining variables v and w are now proportional to
those in the Mandelstam triangle s and a. The triplet
variables from Eq. (71) become

R2 = 1 + 2r2, cos θ = − 1√
1 + 2r2

, φ = ϕ .

Fixed doublet variables ⟹ complicated geometric object inside tetrahedron:
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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be weakest in the corners of the doublet triangle (where
the triplet volume shrinks to the point R = 0) and
strongest at the centers of its sides (where the triplet
extends to the edges of the tetrahedron at R = 2).

Generally, while the spacelike interior of the triangle
and the tetrahedron is free of singularities, one- and two-
photon poles will therefore influence the behavior of the
dressing functions from the timelike domain. The case
of the four-gluon vertex is similar: one expects soft-
gluon divergencies at the tetrahedron’s surface (analo-
gous to the three-gluon vertex) but also glueball bound-
state poles that form triangles in the doublet plane.

C. Special momentum configurations

We conclude this section by discussing some special
momentum configurations.

(i) Uniform soft limit: all momenta vanish simulta-
neously, p = q = k = 0, and consequently also all Lorentz
invariants are zero. This is the limit S0 = 0.

(ii) Central limit: the Mandelstam momenta have
the same length and are orthogonal to each other:

p2 = q2 = k2 = 4
3 S0, ω1 = ω2 = ω3 = 0 . (78)

Therefore only S0 �= 0, whereas a = s = u = v = w = 0.
This is the center of the triangle and the tetrahedron.
The doublet and triplet radii vanish, r = R = 0, and all
photon virtualities are equal: xi = S0.

(iii) Symmetric limit: all Mandelstam momenta are
equal: p = q = k, which entails p1 = p2 = p3 = −3p4.
Therefore also all Lorentz-invariants are identical:

p2 = q2 = k2 = ω1 = ω2 = ω3 = 4
3 S0 . (79)

This entails a = s = v = w = 0 but u = −2, and hence
r = 0, θ = 0 and R = 2 (or equivalently R̂ = 1). The
photon virtualities are

x1 = x2 = x3 = 1
3 S0, x4 = 3S0 . (80)

(iv) Soft-photon limit: one external momentum
vanishes, e.g. p4 = 0 and therefore p + q + k = 0. This
is the phase space relevant for the g − 2 calculation. The
variables p2, q2 and k2 are still independent but

ω1 = 1
2 (p2 − q2 − k2),

ω2 = − 1
2 (p2 − q2 + k2),

ω3 = − 1
2 (p2 + q2 − k2) .

(81)

In terms of doublet and triplet variables, S0, a and s
remain independent whereas

u = 1, v = −
√

2s, w = −
√

2a .

This is the lower face of the tetrahedron in Fig. 4 whose
remaining variables v and w are now proportional to
those in the Mandelstam triangle s and a. The triplet
variables from Eq. (71) become

R2 = 1 + 2r2, cos θ = − 1√
1 + 2r2

, φ = ϕ .

Example: three-gluon vertex from its DSE

four tensor structures

3 variables: 
1 singlet, 1 doublet

Variation in doublet 
almost negligible,
all four “form factors” 
scale with singlet

GE, Williams, Alkofer, Vujinovic,  PRD 89 (2014)
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2 ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +

[
d1
d2

]
· DB + · · · +




t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1

d2

]
=

2∑

k=1

d̃k D(k)
M ,




t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D) D.

),1D(

3

• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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construct all possible multiplets
from generic seed elements:
138 elements, but only 136 independent

Orthonormalize momenta:

is linearly dependent:

From three momenta we can define axialvector,
must appear in pairs to ensure positive parity:

14

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2 ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +

[
d1
d2

]
· DB + · · · +




t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1

d2

]
=

2∑

k=1

d̃k D(k)
M ,




t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D) D.

),1D(

ρσδµνδ

ρσδµνδ

j
σqi

ρqµνδ

l
σqk

ρqj
νqi

µq

σvρvνvµv

j
σni

ρnνvµv

l
σnk

ρnj
νni

µn

3
γn2

βn1
αnµαβγε=µv

⟹ 3 permutations

⟹ 3  = 81 permutations4

⟹ 3  x 6 = 54 permutations2

⟹ 1 permutation 

⟹ 3  = 81 permutations4

⟹ 3  x 6 = 54 permutations2

3, n2, n1n→p, q, k

i
νni

µn
=1i

∑3
+νvµv=µνδ

3

• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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construct all possible multiplets
from generic seed elements:
138 elements, but only 136 independent

transversality not yet implemented,
but quark loop projected on this basis
already behaves as expected:
singlet FFs scale with      ! 

14

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE I. 136-dimensional tensor basis for the 4PA; transver-
sality is not yet implemented. The last row produces six inde-
pendent combinations but the doublet is linearly dependent
due to the spacetime restriction (its inclusion would lead to
138 instead of 136 tensor structures).

with

∆ = p2 q2 k2 − p2 ω2
1 − q2 ω2

2 − k2 ω2
3 + 2 ω1 ω2 ω3 (90)

and

α1 = q2 k2 − ω2
1 ,

α2 = p2 k2 − ω2
2 ,

α3 = p2 q2 − ω2
3 ,

β1 = p2 ω1 − ω2 ω3,

β2 = q2 ω2 − ω1 ω3,

β3 = k2 ω3 − ω1 ω2.

(91)

The function ∆ vanishes at the spacelike surface, see
Eq. (74); in that limit V µV ν and δµν are no longer lin-
early related. Hence, V µV νV ρV σ cannot generally re-
place any of the tensor structures that contain Kronecker
deltas but rather those with mass dimension n = 4. We
tested various options by calculating the quark loop and
projecting onto Table I upon removing different doublets.
Removing any two singlets does not work because the re-
sulting bases are linearly dependent. The only safe choice
turned out be eliminating the doublet D1 for the seed
pµ pν kρ kσ; this leads to dressing functions that are free
of kinematic singularities and well-behaved.

Since each seed produces only one symmetric singlet
and there are 11 singlets in total, this is also the mini-
mum number of independent form factors in the 4PA.
In principle, all 136 dressing dressing functions can be
reconstructed from those eleven through permutations.
However, our goal is different: we want to recast all dress-
ing functions in permutation-group singlets so that their
momentum dependencies become simple.

To this end we also have to expand the dressing func-
tions that correspond to the basis elements in Table I
(which we equip now with a subscript ’B’ for ’basis’) into
multiplets. So far, the contribution from any doublet or
triplet to the 4PA has the form

M = · · · +

[
d1
d2

]
· DB + · · · +




t1
t2
t3


 · T +

B + . . . , (92)

where the dk and tk are the Lorentz-invariant dressing
functions that are obtained numerically. Since the 4PA
is Bose-symmetric, they also form doublets, triplets etc.
Hence, we can expand them into the same types of mul-
tiplets in momentum space (subscript ’M’):

[
d1

d2

]
=

2∑

k=1

d̃k D(k)
M ,




t1
t2
t3


 =

3∑

k=1

t̃k T +
M

(k)
, (93)

etc., where the new dressing functions d̃k and t̃k are now
permutation-group singlets.

In principle this is equivalent to constructing singlets
from the basis elements according to Eq. (28):

D(k)
M · DB, T +

M

(k) · T +
B , . . . (94)

A doublet DB contains two Lorentz tensors and therefore
it can generate two singlets, so we must find two indepen-
dent momentum doublets to contract it with. A triplet
or antitriplet containts three Lorentz tensors and hence
we need three triplets and three antitriplets in momen-
tum space. These should have the lowest possible mass
dimension to avoid kinematic singularities.

The lowest-dimensional multiplets that one can con-
struct from the Lorentz invariants S0, D0 and T0 in
Eq. (54) are collected in Table II. D0 and T0 both con-
tribute with mass dimension n = 2, their bilinears have
n = 4 etc. Up to n = 4 there are three doublets, three
triplets and one antitriplet; the remaining antitriplets
and antisinglets come with n ≥ 6. We have also stated
the powers nD and nT that count how many doublets
D0 or triplets T0 appear in the product; via Eqs. (60)
and (71) these are the powers in the radii r and R.

Note that each slot in Table II for given n, nD and nT
contains at most one element. In principle, for higher
n there are several possibilities to construct multiplets
within the same class but they are all identical up to
numerical factors. These possibilities are collected in
App. ??. An empty slot either means that (a) the re-
spective multiplet is forbidden by the construction rules
in Sec. III C, for example in the case n = 4: a doublet
and triplet cannot be combined to a singlet, doublet or
antisinglet; (b) the multiplet is allowed but vanishes, for
example D ∧ D = 0, T ∧ T = 0, T ∗ (T ∨ T ) = 0; or
(c) the multiplet is allowed, but by factorizing out sin-
glets it can be reduced to lower-dimensional ones, e.g.
D ∗ (D ∗ D) = (D · D) D.

),1D(

0S
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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Transverse basis

Same argument: 43 elements, but only 41 independent

Simpler: find 41 tensors that are transverse, analytic & have lowest mass dimension:

To construct singlets, combine them with momentum multiplets:

Ambiguity: two doublets
with same mass dimension

Need to work out transversality conditions 
introducing kinematic singularities, then construct singlets with lowest momentum powers:
hard (both analytically and symbolically)
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seed elements and work out their permutations. The out-
come of this procedure is collected in Table IV. For ex-
ample, the permutations of the seed element δµνδρσ are

δµνδρσ, δνρδµσ, δρµδνσ. (112)

With Eqs. (42–46) they can be arranged into a singlet S
and a doublet D1 whose structure is analogous to those
in Eq. (72); all other multiplets vanish. Likewise, the
seed δµν kρkσ generates the six permutations

δµν kρkσ,

δρσ kµkν ,

δνρ pµpσ,

δµσ pνpρ,

δρµ qνqσ,

δνσ qρqµ
(113)

which produce a singlet, a doublet D1 and a triplet T +
1 .

The remaining Lorentz tensors with one Kronecker delta
and two identical momenta come from the seed δµνpρpσ

(or equivalently δµνqρqσ) which has 12 permutations:

δµν pρpσ,

δρσ pµpν ,

δµν qρqσ,

δρσ qµqν ,

δνρ qµqσ,

δµσ qνqρ,

δνρ kµkσ,

δµσ kνkρ,

δρµ kνkσ,

δνσ kρkµ

δρµ pνpσ,

δνσ pρpµ.

(114)

One proceeds along these lines until the list is complete.
The resulting 136 Lorentz tensors in Table IV are ar-
ranged with increasing mass dimension n: there are 3,
54 and 79 elements for n = 0, 2, 4, respectively. Because
each seed produces only one symmetric singlet and there
are 11 singlets in total, this is also the minimum number
of independent tensor elements in the four-point func-
tion: all 136 tensors can be reconstructed from those
eleven through permutations.

In principle, for n = 4 there would be 81 independent
elements but here the spacetime restriction discussed
above comes into effect: the basis saturates with 136
elements and adding two more produces linear depen-
dencies. Which ones to remove is not arbitrary because
unfortunate choices can produce kinematic singularities
in the dressing functions already at this stage. If we label
the eleven seed elements in Table (IV) by 1 . . . 11 from
top to bottom, then one can show that the basis element
D1(8) — which is the one in brackets in the table — is a
linear combination of the multiplets

S(2) − S(3), S(7) − S(8),

D1(1), D1(2), D1(3), D2(3), D1(7), D2(8),

T +
1 (4) − T +

2 (5), T +
1 (9) − T +

3 (11),

T −
2 (5), T −

3 (11),

A(3), A(8).

(115)

The coefficients are rather lengthy but they respect the
doublet construction rules in Eq. (53). It turns out that
all coefficients share the denominator ∼ (r2 − 16), where
r is the doublet radius defined in Eq. (91). Hence, unless
r = 4 (which is never reached in practice because r ≤ 2

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE IV. 136-dimensional tensor basis for the vector
four-point function, where gauge invariance is not yet imple-
mented. The doublet in brackets is linearly dependent due to
the spacetime restriction discussed in the text; its inclusion
would lead to 138 instead of 136 tensor structures.

in the spacelike domain) the element D1(8) is linearly
dependent and can be removed.9

In principle we still need to recast the tensor struc-
tures in Table IV into permutation-group singlets. Since
the procedure is the same for the type-I basis and the
transverse basis that we will derive next, we integrate
the discussion into the following subsection.

B. Transverse tensor basis

The remaining task is to work out the consequences
of electromagnetic gauge invariance. We start from the
expression (78) for the LbL amplitude,

Mµνρσ(p, q, k) =

136∑

i=1

fi(. . . ) τµνρσ
i (p, q, k) , (116)

where the τµνρσ
i (p, q, k) are the basis elements from Ta-

ble (IV) or, alternatively, 136 singlets constructed from
them. The transversality conditions have the form

pµ1 Mµνρσ = 0, . . . pσ4 Mµνρσ = 0 (117)

9 This is not entirely satisfactory but sufficient for our present pur-
poses. Ideally it should be possible to remove two elements in
arbitrary kinematics, as it can be done for the Compton scatter-
ing amplitude [24].
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and reduce the basis to a subset of 41 transverse tensors.
Transversality and analyticity require these tensors to be
proportional to at least four powers in the photon mo-
menta. Instead of Eq. (117), one can equivalently work
out the Bose-symmetric condition

Tµα
1 T νβ

2 T ργ
3 T σδ

4 Mαβγδ !
= Mµνρσ , (118)

where the Tµν
i = δµν−pµi pνi /p2i are the transverse projec-

tors with respect to each photon momentum. This leads
to relations between the dressing functions; if we denote
the independent functions by fi and the dependent ones
by gj , they take the form

g1 = g1(f1, . . . f41) ,

...

g95 = g95(f1, . . . f41) .

(119)

They must be solved so that no kinematic singularities
are introduced in the process, i.e., all gj remain regular.
In analogy to Eq. (7) for the two-photon current example,
one must choose the gj such that they carry no kinematic
prefactors. In practice this is not always possible: there
are equations where all gj come with kinematic prefac-
tors and one must divide by them, thereby introducing
kinematic singularities. Since the gj are regular, some of
them must vanish in these kinematic limits. Therefore,
the division should be done such that only the minimal
number of gj picks up kinematical zeros.

After reinserting Eqs. (119) into the general expres-
sion (116), the resulting amplitude will take the form

Mµνρσ =

41∑

i=1

fi τ
µνρσ
⊥i +

95∑

j=1

gj τµνρσ
j , (120)

which is the analogue of the two-photon current (13).
The first term is the transverse part of the amplitude,
with transverse tensors τµνρσ

⊥i that have mass dimension
4, 6, 8 . . . , and dressing functions fi that become constant
in any kinematic limit. The second term constitutes the
gauge part, which is neither longitudinal nor transverse.
Here we have again added the gj , which we eliminated in
the first place; consequently, the gauge part must vanish
if the amplitude is gauge invariant. In turn, if it does
not vanish gauge invariance must be violated — either
by a calculation that respects gauge invariance but is
incomplete, or by an approach where gauge invariance is
simply not built in.

The fact that the τj remain with mass dimension
0, 2, 4, . . . is also the reason why violating gauge invari-
ance can have severe consequences in practice. With an-
other transverse projection of Eq. (120) everything col-
lapses into the transverse part, in the same manner as
in Eq. (14). If the dressing functions gj are nonzero,
they will introduce artificial singularities with momen-
tum powers −4, −2, etc. into the fi. In any case, the

decomposition (120) provides a convenient filter that al-
lows one to quantify such gauge violations and, if possi-
ble, remove them to arrive at physically meaningful pre-
dictions.10

While the procedure outlined here is at least in prin-
ciple straightforward, it is almost impossible to perform
by hand because of the sheer length of the expressions
involved. Hence, we take the alternative route that we
advertised in Sec. II, which is the essence of Tarrach’s
procedure [24]: construct tensors with lowest possible
mass dimensions that are automatically free of kinematic
singularities. The mass dimension must be even because
the four-point function has positive parity. By working
out the permutations of these tensors we can construct
a linearly independent, complete basis made of 41 ele-
ments.

To this end we employ

tµνij = pi · pj δµν − pµj pνi ,

εµνij := εµναβ pαi pβj
(121)

as the building blocks for the construction of such ten-
sors [33]. tµνij is transverse with respect to pµi and pνj , and

εµνij is transverse to both momenta. The only two tensor
structures with mass dimension four are then

ψµνρσ
1 = tµν12 tρσ34 and ψµνρσ

2 = εµν12 ερσ34 . (122)

They have a simple physical interpretation: tµν12 is the
leading tensor of a scalar two-photon current with photon
momenta p1 and p2 (which we now count as incoming),
and εµν12 is that of a pseudoscalar two-photon current (e.g.
for the process π → γγ). Hence, if the LbL amplitude
has scalar poles, they will appear in the form factor of
ψ1 whereas the form factor of ψ2 inherits the pion pole.

Next, we employ these tensors as permutation-group
seeds in analogy to the derivation of Table IV. We take
ψ1 and ψ2 as seed elements and derive the multiplets
according to Eqs. (43–46). It turns out that each of them
generates a singlet S and a doublet of type D1; the other
multiplets vanish. The only singlets of dimension n = 4
are therefore the tensors

S ′(ψ1) = tµν12 tρσ34 + tνρ23 tµσ14 + tρµ31 tνσ24 ,

S ′(ψ2) = εµν12 ερσ34 + ενρ23 εµσ14 + ερµ31 ενσ24 ,
(123)

and their corresponding (fully symmetric) form factors
should be expected to be the dominant ones. Here and
in the following we denote the multiplets for the Lorentz
tensors with primes to distinguish them from the mo-
mentum multiplets.

10 We note that in the context of the LbL amplitude not even the
constituent-quark loop is truly gauge invariant [21]. Instead, the
gauge part is a constant, (δµν δρσ + δνρ δµσ + δρµ δνσ)/(24π2),
and drops out if the identity Mµνρσ = −pλ4 dMµνρλ/dpσ4 is
employed as it is typically done in g − 2 calculations.
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and reduce the basis to a subset of 41 transverse tensors.
Transversality and analyticity require these tensors to be
proportional to at least four powers in the photon mo-
menta. Instead of Eq. (117), one can equivalently work
out the Bose-symmetric condition
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1 T νβ

2 T ργ
3 T σδ

4 Mαβγδ !
= Mµνρσ , (118)

where the Tµν
i = δµν−pµi pνi /p2i are the transverse projec-

tors with respect to each photon momentum. This leads
to relations between the dressing functions; if we denote
the independent functions by fi and the dependent ones
by gj , they take the form

g1 = g1(f1, . . . f41) ,

...

g95 = g95(f1, . . . f41) .

(119)

They must be solved so that no kinematic singularities
are introduced in the process, i.e., all gj remain regular.
In analogy to Eq. (7) for the two-photon current example,
one must choose the gj such that they carry no kinematic
prefactors. In practice this is not always possible: there
are equations where all gj come with kinematic prefac-
tors and one must divide by them, thereby introducing
kinematic singularities. Since the gj are regular, some of
them must vanish in these kinematic limits. Therefore,
the division should be done such that only the minimal
number of gj picks up kinematical zeros.

After reinserting Eqs. (119) into the general expres-
sion (116), the resulting amplitude will take the form

Mµνρσ =

41∑

i=1

fi τ
µνρσ
⊥i +

95∑

j=1

gj τµνρσ
j , (120)

which is the analogue of the two-photon current (13).
The first term is the transverse part of the amplitude,
with transverse tensors τµνρσ

⊥i that have mass dimension
4, 6, 8 . . . , and dressing functions fi that become constant
in any kinematic limit. The second term constitutes the
gauge part, which is neither longitudinal nor transverse.
Here we have again added the gj , which we eliminated in
the first place; consequently, the gauge part must vanish
if the amplitude is gauge invariant. In turn, if it does
not vanish gauge invariance must be violated — either
by a calculation that respects gauge invariance but is
incomplete, or by an approach where gauge invariance is
simply not built in.

The fact that the τj remain with mass dimension
0, 2, 4, . . . is also the reason why violating gauge invari-
ance can have severe consequences in practice. With an-
other transverse projection of Eq. (120) everything col-
lapses into the transverse part, in the same manner as
in Eq. (14). If the dressing functions gj are nonzero,
they will introduce artificial singularities with momen-
tum powers −4, −2, etc. into the fi. In any case, the

decomposition (120) provides a convenient filter that al-
lows one to quantify such gauge violations and, if possi-
ble, remove them to arrive at physically meaningful pre-
dictions.10

While the procedure outlined here is at least in prin-
ciple straightforward, it is almost impossible to perform
by hand because of the sheer length of the expressions
involved. Hence, we take the alternative route that we
advertised in Sec. II, which is the essence of Tarrach’s
procedure [24]: construct tensors with lowest possible
mass dimensions that are automatically free of kinematic
singularities. The mass dimension must be even because
the four-point function has positive parity. By working
out the permutations of these tensors we can construct
a linearly independent, complete basis made of 41 ele-
ments.

To this end we employ

tµνij = pi · pj δµν − pµj pνi ,

εµνij := εµναβ pαi pβj
(121)

as the building blocks for the construction of such ten-
sors [33]. tµνij is transverse with respect to pµi and pνj , and

εµνij is transverse to both momenta. The only two tensor
structures with mass dimension four are then

ψµνρσ
1 = tµν12 tρσ34 and ψµνρσ

2 = εµν12 ερσ34 . (122)

They have a simple physical interpretation: tµν12 is the
leading tensor of a scalar two-photon current with photon
momenta p1 and p2 (which we now count as incoming),
and εµν12 is that of a pseudoscalar two-photon current (e.g.
for the process π → γγ). Hence, if the LbL amplitude
has scalar poles, they will appear in the form factor of
ψ1 whereas the form factor of ψ2 inherits the pion pole.

Next, we employ these tensors as permutation-group
seeds in analogy to the derivation of Table IV. We take
ψ1 and ψ2 as seed elements and derive the multiplets
according to Eqs. (43–46). It turns out that each of them
generates a singlet S and a doublet of type D1; the other
multiplets vanish. The only singlets of dimension n = 4
are therefore the tensors

S ′(ψ1) = tµν12 tρσ34 + tνρ23 tµσ14 + tρµ31 tνσ24 ,

S ′(ψ2) = εµν12 ερσ34 + ενρ23 εµσ14 + ερµ31 ενσ24 ,
(123)

and their corresponding (fully symmetric) form factors
should be expected to be the dominant ones. Here and
in the following we denote the multiplets for the Lorentz
tensors with primes to distinguish them from the mo-
mentum multiplets.

10 We note that in the context of the LbL amplitude not even the
constituent-quark loop is truly gauge invariant [21]. Instead, the
gauge part is a constant, (δµν δρσ + δνρ δµσ + δρµ δνσ)/(24π2),
and drops out if the identity Mµνρσ = −pλ4 dMµνρλ/dpσ4 is
employed as it is typically done in g − 2 calculations.

βbαaµναβε=ab
µνε

νaµb−µνb δ·a=ab
µνt

1 2

4 3

1 2

4 3

34
ρσε12

µνε

34
ρσt12

µνt

Dimension 4,
3 permuations each:
1 singlet, 1 doublet 17

n Seed element # Multiplets n = 4 n = 6 n = 8 n = 10 n = 12

4 tµν
12 tρσ34 3 S, D1 1 1 1

εµν
12 ερσ34 3 S, D1 1 1 1

6 εµλα
1 tαν

22 ερλβ3 tβσ44 9 S, D1, D2, T +
2 , A 1 3 4 1

tµν
12 tρλ33 tλσ44 5 S, T +

1 , A 1 1 2 1

tµν
12 tρλ31 tλσ24 4 S, T +

1 1 1 2

εµν
12 ερλ31 tλσ24 5 D2, T +

2 2 3

tµ123 t
νρσ
234 3 T +

1 1 2

8 tµν
12 tρα31 tαβ

12 tβσ24 5 S, D1, D2 1 2 2

εµν
12 ερα31 tαβ

12 tβσ24 4 D1, D2 2 2

Total 41 2 5 11 17 6

TABLE III. 41-dimensional tensor basis for the transverse part of the 4PA. n denotes the mass dimension of the seed elements
and #m the number of the resulting singlets with mass dimension m.

Applying this to the two seeds (104), we arrive at two
Lorentz tensors at n = 4, two at n = 6 and two at n = 8,
cf. Table VI.

We proceed with the n = 6 case. Here one can find
many possible Lorentz tensors via suitable combinations
of (97); however, only few of them are linearly indepen-
dent. In particular we find only three singlets at n = 6,
namely those that are derived from the seed elements

ψµνρσ
3 = εµλα1 tαν22 ερλβ3 tβσ44 ,

ψµνρσ
4 = tµν12 tρλ33 tλσ44 ,

ψµνρσ
5 = tµν12 tρλ31 tλσ24 .

(106)

ψ3 mirrors the product of two axialvector currents and
will exhibit axialvector poles. ψ4 is the product of the
two scalar tensor structures in (102) and will therefore
have scalar poles. Another basis element

ψµνρσ
6 = εµν12 ερλ31 tλσ24 (107)

produces a singlet which is identical to S ′(ψ2) and also
encodes axialvector poles.

So far we have arrived at seven Lorentz tensors up to
n = 6. Apart from the singlets, the seeds ψ3...6 also pro-
duce further multiplets that will give singlets at n ≥ 8.
While it is not possible to saturate the basis at nmax = 8
(we are still short of 41 − 9 = 32 elements which would
all have to come at n = 8), one can achieve a satura-
tion at nmax = 10. The n = 6 doublets and triplets all
contribute up to dimension 10: a doublet produces two
singlets and a triplet three. An antitriplet contributes
only one basis element up to n = 10 and an antisymmet-
ric singlet drops out entirely. Together with two more

linearly independent seeds at n = 8,

ψµνρσ
7 = tµν12 tρα31 tαβ12 tβσ24 ,

ψµνρσ
8 = εµν12 ερα31 tαβ12 tβσ24 ,

(108)

we finally arrive at 41 transverse singlets up to n = 10
which complete the transverse basis.

The basis elements with the lowest mass dimension
(i.e., dimension four) should carry the dominant dressing
functions: the singlets constructed from ψ1 and ψ2.

VI. RESULTS FOR THE QUARK LOOP

To do:

• Show results for quark loop in NJL and DSE and
discuss their similarities/differences. (Don’t give
value for g-2; also save T-matrix/meson-pole con-
tributions for later.)

• Plot dominant dressing functions over S0. Show
angular dependence (in remaining five variables) as
bands, if possible.

• Show that gauge part is zero.

• Also pion loop?

• Is there an analytic result for the NJL quark loop
(or pion loop)?

⟹

D · D=2S
=1S S

· D)T ∗ Tβ+D ∗ Dα= (3S
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(2, 0) (1, 1) (0, 2) (3, 0) (2, 1) (1, 2) (0, 3)

Singlet D · D T · T D · (D ∗ D) D · (T ∗ T ) T · (T ∨ T )

Doublet D ∗ D T ∗ T D ∗ (T ∗ T )

(D · D)D (T · T )D

Triplet T ∨ D T ∨ T T ∨ (D ∗ D) T ∨ (T ∨ D) T ∨ (T ∨ T )

(D · D) T (T · T ) T

Antitriplet T ∧ D T ∧ (D ∗ D) T ∧ (T ∨ D) T ∧ (T ∨ T )

Antisinglet D ∧ (D ∗ D) D ∧ (T ∗ T )

TABLE III. Products of a doublet D and a triplet T according to the rules (50–57) up to cubic terms. The brackets in the
top row count the number of multiplets; e.g., (2, 1) refers to two doublets and one triplet in the product. The elements in gray
are trivially obtained by multiplying D and T with singlets.

Here, fabc and dabc are the antisymmetric and symmetric
structure constants of SU(N), respectively,

fabc = −2i Tr ([ta, tb] tc) ,

dabc = 2Tr ({ta, tb} tc) ,
(69)

and ta are the SU(N) generators in the fundamental rep-
resentation.

We specialize to SU(3), where ta = λa/2 and λa are
the Gell-Mann matrices. For the seed Aabcd = δab δcd,
the three column vectors in Eq. (42) simply become

f (1) = δab δcd V,

f (2) = δbc δad V,

f (3) = δca δbd V,

V =




1
1
1
1


 , (70)

and the transposition P12 has the effect

P12 f (1) = f (1), P12 f (2) = f (3), P12 f (3) = f (2).

Since all entries in V are identical, Eq. (44) can only
produce zeros and therefore the triplets and antitriplets
vanish. The ψ±

i of Eq. (42) become

ψ+
1 = 8 δab δcd ,

ψ−
1 = 0 ,

ψ+
2 = ψ+

3 = 4 (δbc δad + δca δbd) ,

ψ−
2 = −ψ−

3 = 4 (δbc δad − δca δbd) ,

(71)

and hence only the singlet and the doublet D1 survives:

1
8 S(A) = δab δcd + δbc δad + δca δbd,

1
8 D1(A) =

[
δbc δad − δca δbd

− 1√
3

(δbc δad + δca δbd − 2δab δcd)

]
.

(72)

The derivation for the seed Babcd = fabe fcde is identical
except that the transpositions P12 produce minus signs

due to the antisymmetry of the structure constants. The
resulting antisinglet vanishes because of the Jacobi iden-
tity,

1
8 A(B) = fabe fcde + fbce fade + fcae fbde = 0, (73)

and the remaining doublet is

1
8 D2(B) =

[ 1√
3

(fbce fade + fcae fbde − 2fabe fcde)

fbce fade − fcae fbde

]
.

The seed Cabcd = dabe dcde produces another singlet and
doublet D1, but they linearly depend on the ones above:

S(C) = 1
3 S(A),

D1(C) = − 2
3 D1(A) + 1√

3
D2(B) ,

(74)

which is a consequence of identities that can be found in
Ref. [38]. Finally, the seed Dabcd = fabe dcde produces
one independent antitriplet and nothing else:

1
8 T −

3 (D) =




1√
6

(fabe dcde + fbce dade + fcae dbde)
1√
3

(fbde dcae − fade dbde)

fcde dabe


 ,

with T −
2 (D) = −T −

3 (D). Therefore, the four-gluon ver-
tex in SU(3) has eight independent color structures in
total (we attach a subscript c for color):

Sc = S(A),
D(1)

c = D1(A),

D(2)
c = D2(B),

T −
c = T −

3 (D) . (75)

Ignoring the dabc symbols, they reduce to five.
Now suppose we want to combine them also with

the Lorentz structures. The four-gluon vertex is Bose-
symmetric and therefore the products of Lorentz tensors,
color factors, and momentum-dependent dressing func-
tions must form symmetric singlets. If we restrict our-
selves to the subset of momentum-independent Lorentz

without 

3

• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product
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Transverse basis

In total: 7 seed elements produce 41 singlets with minimal mass dimensions:

7 equivalent seeds in dispersive approach: However, to determine quark loop we need 
gauge part too: only poor constraints here
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seed elements and work out their permutations. The out-
come of this procedure is collected in Table IV. For ex-
ample, the permutations of the seed element δµνδρσ are

δµνδρσ, δνρδµσ, δρµδνσ. (112)

With Eqs. (42–46) they can be arranged into a singlet S
and a doublet D1 whose structure is analogous to those
in Eq. (72); all other multiplets vanish. Likewise, the
seed δµν kρkσ generates the six permutations

δµν kρkσ,

δρσ kµkν ,

δνρ pµpσ,

δµσ pνpρ,

δρµ qνqσ,

δνσ qρqµ
(113)

which produce a singlet, a doublet D1 and a triplet T +
1 .

The remaining Lorentz tensors with one Kronecker delta
and two identical momenta come from the seed δµνpρpσ

(or equivalently δµνqρqσ) which has 12 permutations:

δµν pρpσ,

δρσ pµpν ,

δµν qρqσ,

δρσ qµqν ,

δνρ qµqσ,

δµσ qνqρ,

δνρ kµkσ,

δµσ kνkρ,

δρµ kνkσ,

δνσ kρkµ

δρµ pνpσ,

δνσ pρpµ.

(114)

One proceeds along these lines until the list is complete.
The resulting 136 Lorentz tensors in Table IV are ar-
ranged with increasing mass dimension n: there are 3,
54 and 79 elements for n = 0, 2, 4, respectively. Because
each seed produces only one symmetric singlet and there
are 11 singlets in total, this is also the minimum number
of independent tensor elements in the four-point func-
tion: all 136 tensors can be reconstructed from those
eleven through permutations.

In principle, for n = 4 there would be 81 independent
elements but here the spacetime restriction discussed
above comes into effect: the basis saturates with 136
elements and adding two more produces linear depen-
dencies. Which ones to remove is not arbitrary because
unfortunate choices can produce kinematic singularities
in the dressing functions already at this stage. If we label
the eleven seed elements in Table (IV) by 1 . . . 11 from
top to bottom, then one can show that the basis element
D1(8) — which is the one in brackets in the table — is a
linear combination of the multiplets

S(2) − S(3), S(7) − S(8),

D1(1), D1(2), D1(3), D2(3), D1(7), D2(8),

T +
1 (4) − T +

2 (5), T +
1 (9) − T +

3 (11),

T −
2 (5), T −

3 (11),

A(3), A(8).

(115)

The coefficients are rather lengthy but they respect the
doublet construction rules in Eq. (53). It turns out that
all coefficients share the denominator ∼ (r2 − 16), where
r is the doublet radius defined in Eq. (91). Hence, unless
r = 4 (which is never reached in practice because r ≤ 2

n Seed # Multiplet type

0 δµνδρσ 3 S, D1

2 δµν kρ kσ 6 S, D1, T +
1

δµν pρ pσ 12 S, D1, D2, T ±
1 , A

δµν pρ qσ 12 S, D1, T +
1 , T ±

2

δµν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

4 pµ pν pρ pσ 3 S, D1

pµ pν qρ qσ 6 S, D1, T −
1

pµ pν kρ kσ 10 S, (D1,) D2, T ±
1 , A

pµ qν kρ kσ 12 S, D1, T +
1 , T ±

2

pµ pν pρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

pµ pν qρ kσ 24 S, D1, D2, T ±
1 , T ±

2 , T ±
3 , A

TABLE IV. 136-dimensional tensor basis for the vector
four-point function, where gauge invariance is not yet imple-
mented. The doublet in brackets is linearly dependent due to
the spacetime restriction discussed in the text; its inclusion
would lead to 138 instead of 136 tensor structures.

in the spacelike domain) the element D1(8) is linearly
dependent and can be removed.9

In principle we still need to recast the tensor struc-
tures in Table IV into permutation-group singlets. Since
the procedure is the same for the type-I basis and the
transverse basis that we will derive next, we integrate
the discussion into the following subsection.

B. Transverse tensor basis

The remaining task is to work out the consequences
of electromagnetic gauge invariance. We start from the
expression (78) for the LbL amplitude,

Mµνρσ(p, q, k) =

136∑

i=1

fi(. . . ) τµνρσ
i (p, q, k) , (116)

where the τµνρσ
i (p, q, k) are the basis elements from Ta-

ble (IV) or, alternatively, 136 singlets constructed from
them. The transversality conditions have the form

pµ1 Mµνρσ = 0, . . . pσ4 Mµνρσ = 0 (117)

9 This is not entirely satisfactory but sufficient for our present pur-
poses. Ideally it should be possible to remove two elements in
arbitrary kinematics, as it can be done for the Compton scatter-
ing amplitude [24].
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and reduce the basis to a subset of 41 transverse tensors.
Transversality and analyticity require these tensors to be
proportional to at least four powers in the photon mo-
menta. Instead of Eq. (117), one can equivalently work
out the Bose-symmetric condition

Tµα
1 T νβ

2 T ργ
3 T σδ

4 Mαβγδ !
= Mµνρσ , (118)

where the Tµν
i = δµν−pµi pνi /p2i are the transverse projec-

tors with respect to each photon momentum. This leads
to relations between the dressing functions; if we denote
the independent functions by fi and the dependent ones
by gj , they take the form

g1 = g1(f1, . . . f41) ,

...

g95 = g95(f1, . . . f41) .

(119)

They must be solved so that no kinematic singularities
are introduced in the process, i.e., all gj remain regular.
In analogy to Eq. (7) for the two-photon current example,
one must choose the gj such that they carry no kinematic
prefactors. In practice this is not always possible: there
are equations where all gj come with kinematic prefac-
tors and one must divide by them, thereby introducing
kinematic singularities. Since the gj are regular, some of
them must vanish in these kinematic limits. Therefore,
the division should be done such that only the minimal
number of gj picks up kinematical zeros.

After reinserting Eqs. (119) into the general expres-
sion (116), the resulting amplitude will take the form

Mµνρσ =

41∑

i=1

fi τ
µνρσ
⊥i +

95∑

j=1

gj τµνρσ
j , (120)

which is the analogue of the two-photon current (13).
The first term is the transverse part of the amplitude,
with transverse tensors τµνρσ

⊥i that have mass dimension
4, 6, 8 . . . , and dressing functions fi that become constant
in any kinematic limit. The second term constitutes the
gauge part, which is neither longitudinal nor transverse.
Here we have again added the gj , which we eliminated in
the first place; consequently, the gauge part must vanish
if the amplitude is gauge invariant. In turn, if it does
not vanish gauge invariance must be violated — either
by a calculation that respects gauge invariance but is
incomplete, or by an approach where gauge invariance is
simply not built in.

The fact that the τj remain with mass dimension
0, 2, 4, . . . is also the reason why violating gauge invari-
ance can have severe consequences in practice. With an-
other transverse projection of Eq. (120) everything col-
lapses into the transverse part, in the same manner as
in Eq. (14). If the dressing functions gj are nonzero,
they will introduce artificial singularities with momen-
tum powers −4, −2, etc. into the fi. In any case, the

decomposition (120) provides a convenient filter that al-
lows one to quantify such gauge violations and, if possi-
ble, remove them to arrive at physically meaningful pre-
dictions.10

While the procedure outlined here is at least in prin-
ciple straightforward, it is almost impossible to perform
by hand because of the sheer length of the expressions
involved. Hence, we take the alternative route that we
advertised in Sec. II, which is the essence of Tarrach’s
procedure [24]: construct tensors with lowest possible
mass dimensions that are automatically free of kinematic
singularities. The mass dimension must be even because
the four-point function has positive parity. By working
out the permutations of these tensors we can construct
a linearly independent, complete basis made of 41 ele-
ments.

To this end we employ

tµνij = pi · pj δµν − pµj pνi ,

εµνij := εµναβ pαi pβj
(121)

as the building blocks for the construction of such ten-
sors [33]. tµνij is transverse with respect to pµi and pνj , and

εµνij is transverse to both momenta. The only two tensor
structures with mass dimension four are then

ψµνρσ
1 = tµν12 tρσ34 and ψµνρσ

2 = εµν12 ερσ34 . (122)

They have a simple physical interpretation: tµν12 is the
leading tensor of a scalar two-photon current with photon
momenta p1 and p2 (which we now count as incoming),
and εµν12 is that of a pseudoscalar two-photon current (e.g.
for the process π → γγ). Hence, if the LbL amplitude
has scalar poles, they will appear in the form factor of
ψ1 whereas the form factor of ψ2 inherits the pion pole.

Next, we employ these tensors as permutation-group
seeds in analogy to the derivation of Table IV. We take
ψ1 and ψ2 as seed elements and derive the multiplets
according to Eqs. (43–46). It turns out that each of them
generates a singlet S and a doublet of type D1; the other
multiplets vanish. The only singlets of dimension n = 4
are therefore the tensors

S ′(ψ1) = tµν12 tρσ34 + tνρ23 tµσ14 + tρµ31 tνσ24 ,

S ′(ψ2) = εµν12 ερσ34 + ενρ23 εµσ14 + ερµ31 ενσ24 ,
(123)

and their corresponding (fully symmetric) form factors
should be expected to be the dominant ones. Here and
in the following we denote the multiplets for the Lorentz
tensors with primes to distinguish them from the mo-
mentum multiplets.

10 We note that in the context of the LbL amplitude not even the
constituent-quark loop is truly gauge invariant [21]. Instead, the
gauge part is a constant, (δµν δρσ + δνρ δµσ + δρµ δνσ)/(24π2),
and drops out if the identity Mµνρσ = −pλ4 dMµνρλ/dpσ4 is
employed as it is typically done in g − 2 calculations.
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and reduce the basis to a subset of 41 transverse tensors.
Transversality and analyticity require these tensors to be
proportional to at least four powers in the photon mo-
menta. Instead of Eq. (117), one can equivalently work
out the Bose-symmetric condition

Tµα
1 T νβ

2 T ργ
3 T σδ

4 Mαβγδ !
= Mµνρσ , (118)

where the Tµν
i = δµν−pµi pνi /p2i are the transverse projec-

tors with respect to each photon momentum. This leads
to relations between the dressing functions; if we denote
the independent functions by fi and the dependent ones
by gj , they take the form

g1 = g1(f1, . . . f41) ,

...

g95 = g95(f1, . . . f41) .

(119)

They must be solved so that no kinematic singularities
are introduced in the process, i.e., all gj remain regular.
In analogy to Eq. (7) for the two-photon current example,
one must choose the gj such that they carry no kinematic
prefactors. In practice this is not always possible: there
are equations where all gj come with kinematic prefac-
tors and one must divide by them, thereby introducing
kinematic singularities. Since the gj are regular, some of
them must vanish in these kinematic limits. Therefore,
the division should be done such that only the minimal
number of gj picks up kinematical zeros.

After reinserting Eqs. (119) into the general expres-
sion (116), the resulting amplitude will take the form

Mµνρσ =

41∑

i=1

fi τ
µνρσ
⊥i +

95∑

j=1

gj τµνρσ
j , (120)

which is the analogue of the two-photon current (13).
The first term is the transverse part of the amplitude,
with transverse tensors τµνρσ

⊥i that have mass dimension
4, 6, 8 . . . , and dressing functions fi that become constant
in any kinematic limit. The second term constitutes the
gauge part, which is neither longitudinal nor transverse.
Here we have again added the gj , which we eliminated in
the first place; consequently, the gauge part must vanish
if the amplitude is gauge invariant. In turn, if it does
not vanish gauge invariance must be violated — either
by a calculation that respects gauge invariance but is
incomplete, or by an approach where gauge invariance is
simply not built in.

The fact that the τj remain with mass dimension
0, 2, 4, . . . is also the reason why violating gauge invari-
ance can have severe consequences in practice. With an-
other transverse projection of Eq. (120) everything col-
lapses into the transverse part, in the same manner as
in Eq. (14). If the dressing functions gj are nonzero,
they will introduce artificial singularities with momen-
tum powers −4, −2, etc. into the fi. In any case, the

decomposition (120) provides a convenient filter that al-
lows one to quantify such gauge violations and, if possi-
ble, remove them to arrive at physically meaningful pre-
dictions.10

While the procedure outlined here is at least in prin-
ciple straightforward, it is almost impossible to perform
by hand because of the sheer length of the expressions
involved. Hence, we take the alternative route that we
advertised in Sec. II, which is the essence of Tarrach’s
procedure [24]: construct tensors with lowest possible
mass dimensions that are automatically free of kinematic
singularities. The mass dimension must be even because
the four-point function has positive parity. By working
out the permutations of these tensors we can construct
a linearly independent, complete basis made of 41 ele-
ments.

To this end we employ

tµνij = pi · pj δµν − pµj pνi ,

εµνij := εµναβ pαi pβj
(121)

as the building blocks for the construction of such ten-
sors [33]. tµνij is transverse with respect to pµi and pνj , and

εµνij is transverse to both momenta. The only two tensor
structures with mass dimension four are then

ψµνρσ
1 = tµν12 tρσ34 and ψµνρσ

2 = εµν12 ερσ34 . (122)

They have a simple physical interpretation: tµν12 is the
leading tensor of a scalar two-photon current with photon
momenta p1 and p2 (which we now count as incoming),
and εµν12 is that of a pseudoscalar two-photon current (e.g.
for the process π → γγ). Hence, if the LbL amplitude
has scalar poles, they will appear in the form factor of
ψ1 whereas the form factor of ψ2 inherits the pion pole.

Next, we employ these tensors as permutation-group
seeds in analogy to the derivation of Table IV. We take
ψ1 and ψ2 as seed elements and derive the multiplets
according to Eqs. (43–46). It turns out that each of them
generates a singlet S and a doublet of type D1; the other
multiplets vanish. The only singlets of dimension n = 4
are therefore the tensors

S ′(ψ1) = tµν12 tρσ34 + tνρ23 tµσ14 + tρµ31 tνσ24 ,

S ′(ψ2) = εµν12 ερσ34 + ενρ23 εµσ14 + ερµ31 ενσ24 ,
(123)

and their corresponding (fully symmetric) form factors
should be expected to be the dominant ones. Here and
in the following we denote the multiplets for the Lorentz
tensors with primes to distinguish them from the mo-
mentum multiplets.

10 We note that in the context of the LbL amplitude not even the
constituent-quark loop is truly gauge invariant [21]. Instead, the
gauge part is a constant, (δµν δρσ + δνρ δµσ + δρµ δνσ)/(24π2),
and drops out if the identity Mµνρσ = −pλ4 dMµνρλ/dpσ4 is
employed as it is typically done in g − 2 calculations.
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n Seed element # Multiplets n = 4 n = 6 n = 8 n = 10 n = 12

4 tµν
12 tρσ34 3 S, D1 1 1 1

εµν
12 ερσ34 3 S, D1 1 1 1

6 εµλα
1 tαν

22 ερλβ3 tβσ44 9 S, D1, D2, T +
2 , A 1 3 4 1

tµν
12 tρλ33 tλσ44 5 S, T +

1 , A 1 1 2 1

tµν
12 tρλ31 tλσ24 4 S, T +

1 1 1 2

εµν
12 ερλ31 tλσ24 5 D2, T +

2 2 3

tµ123 t
νρσ
234 3 T +

1 1 2

8 tµν
12 tρα31 tαβ

12 tβσ24 5 S, D1, D2 1 2 2

εµν
12 ερα31 tαβ

12 tβσ24 4 D1, D2 2 2

Total 41 2 5 11 17 6

TABLE III. 41-dimensional tensor basis for the transverse part of the 4PA. n denotes the mass dimension of the seed elements
and #m the number of the resulting singlets with mass dimension m.

Applying this to the two seeds (104), we arrive at two
Lorentz tensors at n = 4, two at n = 6 and two at n = 8,
cf. Table VI.

We proceed with the n = 6 case. Here one can find
many possible Lorentz tensors via suitable combinations
of (97); however, only few of them are linearly indepen-
dent. In particular we find only three singlets at n = 6,
namely those that are derived from the seed elements

ψµνρσ
3 = εµλα1 tαν22 ερλβ3 tβσ44 ,

ψµνρσ
4 = tµν12 tρλ33 tλσ44 ,

ψµνρσ
5 = tµν12 tρλ31 tλσ24 .

(106)

ψ3 mirrors the product of two axialvector currents and
will exhibit axialvector poles. ψ4 is the product of the
two scalar tensor structures in (102) and will therefore
have scalar poles. Another basis element

ψµνρσ
6 = εµν12 ερλ31 tλσ24 (107)

produces a singlet which is identical to S ′(ψ2) and also
encodes axialvector poles.

So far we have arrived at seven Lorentz tensors up to
n = 6. Apart from the singlets, the seeds ψ3...6 also pro-
duce further multiplets that will give singlets at n ≥ 8.
While it is not possible to saturate the basis at nmax = 8
(we are still short of 41 − 9 = 32 elements which would
all have to come at n = 8), one can achieve a satura-
tion at nmax = 10. The n = 6 doublets and triplets all
contribute up to dimension 10: a doublet produces two
singlets and a triplet three. An antitriplet contributes
only one basis element up to n = 10 and an antisymmet-
ric singlet drops out entirely. Together with two more

linearly independent seeds at n = 8,

ψµνρσ
7 = tµν12 tρα31 tαβ12 tβσ24 ,

ψµνρσ
8 = εµν12 ερα31 tαβ12 tβσ24 ,

(108)

we finally arrive at 41 transverse singlets up to n = 10
which complete the transverse basis.

The basis elements with the lowest mass dimension
(i.e., dimension four) should carry the dominant dressing
functions: the singlets constructed from ψ1 and ψ2.

VI. RESULTS FOR THE QUARK LOOP

To do:

• Show results for quark loop in NJL and DSE and
discuss their similarities/differences. (Don’t give
value for g-2; also save T-matrix/meson-pole con-
tributions for later.)

• Plot dominant dressing functions over S0. Show
angular dependence (in remaining five variables) as
bands, if possible.

• Show that gauge part is zero.

• Also pion loop?

• Is there an analytic result for the NJL quark loop
(or pion loop)?
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n Seed element # Multiplets n = 4 n = 6 n = 8 n = 10 n = 12

4 tµν12 tρσ34 3 S, D1 1 1 1

εµν
12 ερσ34 3 S, D1 1 1 1

6 εµλα
1 tαν

22 ερλβ3 tβσ44 12 S, D1, D2, T +
2 , T −

2 , A 1 3 5 3

tµν
12 tρλ33 tλσ44 6 S, D1, T +

1 1 2 3

tµν12 tρλ31 tλσ24 7 S, T +
1 , T −

1 1 1 3 2

εµν
12 ερλ31 tλσ24 7 D2, T +

2 , T −
1 , T −

2 2 5

8 tµν12 tρα31 tαβ
12 tβσ24 3 S, D1, T +

1 1 2

Total 41 2 5 11 18 5

TABLE V. 41-dimensional tensor basis for the transverse part of the photon four-point function. n denotes the mass dimension
of the seed elements and # the number of the resulting singlets with mass dimension n. For the grayed terms we keep only the
lowest-dimensional singlets with n = 10.

To obtain the remaining basis elements, we define

tµαβi := δµβ pαi − δµα pβi ,

εµαβi := εµαβλ pλi .
(124)

These are the lowest-dimensional Lorentz tensors that
are transverse without introducing kinematic singulari-

ties. tµαβi is transverse to the momentum pµi and εµαβi is
transverse in all Lorentz indices. Both are antisymmet-
ric in α and β.11 The quantities in Eq. (121) are their
momentum contractions:

tµνij = tµανi pαj , εµνij = εµανi pαj , (126)

and by contracting once more we can define

tµijk := tµαij pαk = pi · pj pµk − pi · pk pµj ,

εµijk := εµαij pαk = εµαβγ pαi pβj pγk .
(127)

At dimension n = 6 one can find many possible Lorentz
tensors by taking suitable combinations of these quanti-
ties and their momentum contractions; however, only few
of them are linearly independent. In particular, it turns
out that the seed elements

ψµνρσ
3 = εµλα1 tαν22 ερλβ3 tβσ44 ,

ψµνρσ
4 = tµν12 tρλ33 tλσ44 ,

ψµνρσ
5 = tµν12 tρλ31 tλσ24 ,

ψµνρσ
6 = εµν12 ερλ31 tλσ24

(128)

11 Note that the electromagnetic field-strength tensor and its dual
can be expressed in terms of these quantities:

Fµν ∼ tαµν
∂ Aα, F̃µν ∼ εαµν

∂ Aα. (125)

together with one element at n = 8,

ψµνρσ
7 = tµν12 tρα31 tαβ12 tβσ24 , (129)

are sufficient to generate a complete tensor basis with 41
elements. The multiplets that they produce are collected
in Table V. We will discuss them in a moment, but let
us first resolve the remaining issue.

Ultimately we would like to cast the 41 tensor elements
into permutation-group singlets, so the question is: how
can one construct singlets from, for example, a doublet?
According to Eq. (50), the only possibility is to take dot
products with other doublets. They will be made from
the momentum multiplets S0, D0 and T0 that we defined
in Eqs. (84–86): S0 has mass dimension two whereas D0

and T0 have dimension four. The second row in Table III
collects all possible doublets at dimension four and six.
Combined with D0, these are

D0 , D0 ∗ D0 , T0 ∗ T0 , D0 ∗ (T0 ∗ T0) (130)

apart from further trivial multiplications with singlets.
Now take for example the doublet D′ = D′

1(ψ1), which
is obtained from the tensor structure ψ1. It has two in-
dependent components, and by dotting it into two inde-
pendent doublets from the list above we can generate two
singlets. Restricting ourselves to the lowest-dimensional
possible combinations, these are

S ′
1 = D0 · D′,

S ′
2 = (α D0 ∗ D0 + β T0 ∗ T0) · D′,

(131)

where α, β are constants. Hence, in the process of con-
structing singlets we have raised the dimension by two
and four, respectively: a doublet with dimension n gen-
erates a singlet at n + 2 and another singlet at n + 4.
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To construct singlets from a triplet, we have to dot
it into three independent triplets. The available options
from Table III are

T0 , T0 ∨ D0 , T0 ∨ T0 (132)

which have dimension two, four and four, respectively.
Therefore, a triplet of dimension n generates a singlet at
n + 2 and two singlets at n + 4. Similarly, the fourth
row in Table III shows that an antitriplet of dimension
n produces a singlet at n + 4 and two singlets at n + 6,
and the last row entails that an antisinglet of dimension
n leads to a singlet at n + 6.

In this regard, Table V should be read as follows. We
start from the seven independent seed elements ψ1 . . . ψ7

defined above, with dimensions n = 4, 6, 8. With their
help we can generate 41 linearly independent tensors be-
cause each seed generates a number of multiplets. Com-
bining them with the momentum multiplets in the way
described above, we generate further singlets whose di-
mension has raised: the singlets have dimension n =
4, 6, 8, 10, 12.

Working out all multiplets by hand would be rather
tedious, but it is easy to implement in Mathematica. We
start from a large number of seed elements (essentially all
conceivable tensor structures at n = 4, 6, 8 etc.) and let
Mathematica generate the multiplets. We then add them
up until all singlets at n = 4 are found, proceed to n = 6,
etc. At each step we check for linear independence, i.e.,
whether the condition

if
N∑

i=1

fi τ
µνρσ
i (p, q, k) = 0 ⇒ fi = 0 (133)

is still satisfied, until N = 41 is reached (or N = 136
in the case of Table IV). In that way one also confirms
directly that there cannot be more than 41 linearly inde-
pendent transverse elements (or more than 136 elements
in general).

Of course it is possible to construct many equivalent
bases by this procedure, but they share some common
features. First, the maximum number of singlets for a
given mass dimension n (the last row in Table V), ordered
with increasing n, is fixed: we found at most two singlets
with n = 4, five singlets with n = 6, etc. Second, we
never found fewer than five singlets with n = 12. By
contrast, the same procedure applied to Table IV would
produce singlets with n = 10 at most (they originate from
the antitriplet and antisinglet seeds with n = 4 whose
mass dimension is raised by 6.) The appearance of n = 12
singlets in the transverse basis therefore suggests that not
all of them are related in a simple way to the type-I basis
without kinematic prefactors, as it was the case in the
two-photon current example (8), and that divisions must
have been necessary in the solution process of Eqs. (119).
Barring oversights, we are therefore led to believe that
Table V can indeed serve as a minimal basis for the LbL
amplitude.

There is, however, a remaining problem. The construc-
tion of singlets with lowest mass dimension from a given
multiplet is not unique, as one can infer from the param-
eters α, β in Eq. (131). There are two momentum dou-
blets at n = 4 and both of them are equally suitable for
constructing a singlet. Choosing one over the other can
result, once again, in kinematic singularities. Similarly,
there are three antitriplets at n = 6 and two antisinglets
at n = 6. In fact, only the triplet case is unique because
there are three momentum triplets up to n = 4 (those in
Eq. (132)). One might conclude that it is simply impos-
sible to construct a 41-dimensional transverse basis made
of singlets, thus effectively leading to a redundant basis.
On the other hand, one can argue that the solution of
the system of equations (119), which we circumvented so
far, should be unambiguous and determine these coeffi-
cients in the process. (We mean ‘unambiguous’ in the
sense that linear combinations of singlets with the same
mass dimension are still allowed.) Ultimately it might
turn out to be unavoidable to solve Eqs. (119) directly,
because even with a 41-dimensional transverse tensor ba-
sis at hand one still needs to construct a gauge part that
is kinematically safe and consistent with it.

We were recently made aware12 of a similar attempt
in constructing a transverse basis for the LbL ampli-
tude [40]. Expressed in our language, the seed elements
(Eq. (3.14) of Part III therein) have the form

T1 ∼ εµν12 ερσ34 ,

T4 ∼ tµν12 tρσ34 ,

T7 ∼ tµν12 tρλ31 tλσ14 ,

T19 ∼ tµν12 tρλ31 tλσ24 ,

T31 ∼ tµν12 tρ312 tσ412,

T37 ∼ tµ134 tναβ2 tραλ3 tσβλ4 ,

T49 ∼ (tµα14 tβν32 − tµβ13 tαν42 ) tραλ3 tσβλ4 .

(134)

The problem of minimality is not addressed, but in terms
of counting mass dimensions these tensors are equivalent
to the seeds in Table V: there are two seeds with n = 2,
four with n = 6 and one with n = 8. After working
out the permutations, also the distribution of singlets
is the same: we found an ‘optimal’ arrangement where
41 = 2 + 5 + 11 + 18 + 5, as in the last row in Table V.

Finally, we should comment on the four-gluon vertex.
In that case the construction of the transverse part is the
same as in Table V, except for the final construction of
the singlets. The reason is of course the additional color
structure which also produces multiplets (see Sec. IV C),
so there are more possibilities for constructing singlets
which have lower mass dimensions. In addition, the four-
gluon vertex has a nonzero gauge part, which makes a so-
lution of Eqs. (119) mandatory. On the other hand, the
presence of the gauge part also simplifies the problem be-
cause a type-I basis such as that in Table IV (or even the

12 We thank Gilberto Colangelo for bringing this to our attention.
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• Triplets of type T + are obtained from

S T +, A T −,
T − ∨ D ,
T + ∧ D ,

T ± ∨ T ± ,
T ± ∧ T ∓ .

(19)

We defined the ’wedge’ and ’vee’ products for the
triplets

T ∧ T ′ :=




vw′ − wv′

wu′ − uw′

uv′ − vu′


 ,

T ∨ T ′ :=




vv′ + ww′ − 2uu′

uv′ + vu′ +
√

2 (vv′ − ww′)
uw′ + wu′ −

√
2 (vw′ + wv′)


 ,

(20)

and for the combination of triplet and doublet:

T ∧ D :=




vs + wa
us − 1√

2
(vs − wa)

ua + 1√
2

(va + ws)


 ,

T ∨ D :=




va − ws
ua − 1√

2
(va + ws)

−us − 1√
2

(vs − wa)


 .

(21)

The wedge product for the triplets is the usual vec-
tor product.

• Finally, triplets of type T − are obtained from

S T −, A T +,
T − ∧ D ,
T + ∨ D

T ± ∧ T ± ,
T ± ∨ T ∓ .

(22)

This list is exhaustive. As an example, suppose we want
to find all possible products of one triplet T + with itself.
The resulting six combinations u2, v2, w2, uv, uw, vw
can be rearranged in a symmetric singlet, a doublet, and
a triplet of type T +:

T + · T + = u2 + v2 + w2 ,

T + ∗ T + =

[
2w (v +

√
2 u)

w2 − v2 + 2
√

2 uv

]
,

T + ∨ T + =




v2 + w2 − 2u2

2uv +
√

2 (v2 − w2)

2w (u −
√

2 v)


 .

(23)

The triplet of type T − vanishes because T + ∧ T + = 0.

II. PHASE SPACE

A. Kinematics

The photon four-point function depends on the mo-
menta p1, p2, p3, p4, of which only three are inde-
pendent due to the momentum-conservation constraint
p1 + p2 + p3 + p4 = 0. The kinematics of the Bose-
symmetric photon four-point function are perhaps most
conveniently expressed in terms of s−, u− and t−channel
momenta:

p = p2 + p3 = −p1 − p4 ,

q = p3 + p1 = −p2 − p4 ,

k = p1 + p2 = −p3 − p4 ,

(24)

with the inverse relations

p1 = 1
2 (q − p + k) ,

p3 = 1
2 (q + p − k) ,

p2 = − 1
2 (q − p − k) ,

p4 = − 1
2 (q + p + k) .

(25)

The system is described by six independent Lorentz in-
variants. From the momenta above one can form the
three Mandelstam variables p2, q2, k2, and the angular
variables

ω1 = q · k, ω2 = p · k, ω3 = p · q (26)

which are related to the ’offshellness’ of the photons as
we shall see below.

As we explained in Sec. ??, for the practical calculation
of the photon four-point function it is not necessary to
compute all 24 permutations explicitly. It is sufficient to
retain only those three that transform the s−, u− and
t−channel among themselves:

t − channel : p1, p2, p3, p4 ⇔ p, q, k,

s − channel : p2, p3, p1, p4 ⇔ q, k, p, (27)

u − channel : p3, p1, p2, p4 ⇔ k, p, q.

Apparently these three transformations amount to cyclic
permutations of the variables p2, q2 k2 and also the ωi.
Because we would like to implement these permutations
with the smallest numerical effort, let us take a closer
look at the phase space that the above variables generate.
In particular we want to arrange these Lorentz invariants
in permutation-group multiplets.

Let us first find the multiplets for the four-momenta.
If we use the seed f1234 = k = p1 + p2 and perform the
steps in Eqs. (??–??), we find that only the triplet T +

is nonzero:

T + =
1

2




1√
3

(p + q + k)
1√
6

(p + q − 2k)
1√
2

(q − p)


 . (28)

These are just the three independent Jacobi momenta
of the system. When we now apply the three product

Gernot Eichmann (Uni Giessen) Sept 29, 2016 24 / 26



0.04

0.02

-0.02

0.00

0.04

0.02

-0.02

0.00

0.04

0.02

-0.02

0.00

0.002

0.004

0.006

0.008

0.010

0.000

!

Quark loop with 𝑚� = const

LbL amplitude in NJL model:  𝑆� dependence for fixed doublet & triplet variables

: “Tree level” Gauge part is zero

11. . . F1F 41. . . F12F

42F

136. . . F43F

𝑆� [𝐺𝑒𝑉�] 𝑆� [𝐺𝑒𝑉�]

𝑆� [𝐺𝑒𝑉�] 𝑆� [𝐺𝑒𝑉�]

  

 

 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136

 

 

 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41

 

 

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

34
ρσε12

µνε

34
ρσt12

µνt

Gernot Eichmann (Uni Giessen) Sept 29, 2016 25 / 26



8

4

-4

0

8

4

-4

0

8

4

-4

0

0.01

0.02

0.03

0.04

0.05

0.00

? If quark loop
breaks gauge
invariance,
the effects are
small!

Quark loop from DSE

34
ρσε12

µνε

34
ρσt12

µνt

LbL amplitude from DSE:  𝑆� dependence for fixed doublet & triplet variables

: “Tree level”  Gauge part is zero

11. . . F1F 41. . . F12F

42F

136. . . F43F

𝑆� [𝐺𝑒𝑉�] 𝑆� [𝐺𝑒𝑉�]

𝑆� [𝐺𝑒𝑉�] 𝑆� [𝐺𝑒𝑉�]

  

 

 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136

 

 

 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41

 

 

 1
 2
 3
 4
 5
 6
 7
 8
 9
 10
 11

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

0.0 0.5 1.0 2.01.5

Gernot Eichmann (Uni Giessen) Sept 29, 2016 25 / 26



Summary

Thank you!

Microscopic decomposition:

Understanding structure of the LbL amplitude is important for pinning down g-2

= =𝑇+

Best DSE values so far:

10−10×7(2).= 10µa 10−10×(1.2)= 8.1µa
PSQLHVP 10−10×= 676µa

Mini-review: GE, Fischer, Heupel, Williams,  1411.7876,  AIP Conf. Proc. 1701 (2016) 

calculate sum of both diagrams (gauge invariant),
in tandem with Compton scattering

revisit transversality constraints to derive T+G basis 
⇒ pin down quark loop

calculate two-photon form factors 
⇒ missing effects in T-matrix?
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Backup slides

Tetraquark notes

Gernot Eichmann

Defining the momenta as in your notes, we have the
two momentum multiplets

SM =
4∑

i=1
pi = P , T +

M = 1
2




1√
3 (p + q + k)

1√
6 (p + q − 2k)

1√
2 (q − p)


 . (1)

Apart from the trivial singlet P 2, the resulting nine
Lorentz invariants are

S0 = T +
M · T +

M = 1
4 (p2 + q2 + k2) ,

D0 = T +
M ∗ T +

M = 1
4S0

[ √
3 (q2 − p2)

p2 + q2 − 2k2

]
,

T0 = T +
M ∨ T +

M = 1
4S0




2 (ω1 + ω2 + ω3)√
2 (ω1 + ω2 − 2ω3)√

6 (ω2 − ω1)


 , (2)

T1 = T +
M · SM = 1

4S0




2 (η1 + η2 + η3)√
2 (η1 + η2 − 2η3)√

6 (η2 − η1)


 ,

with

ω1 = q · k , ω2 = p · k , ω3 = p · q (3)

and

η1 = p · P̂ , η2 = q · P̂ , η3 = k · P̂ . (4)

We can express p2, q2, k2 in terms of the doublet vari-
ables:

p2 = 2
3 S0(2 + s −

√
3 a) ,

q2 = 2
3 S0(2 + s −

√
3 a) ,

k2 = 4
3 S0(1 − s) .

(5)

Now let’s express the ‘pole variables’ in terms of these.
Let’s say Z+ = (p1 + p2)2 and Z− = (p3 + p4)2. Then

Z± =
(

k ± P

2

)2
= k2 − M2

4 ± iMη3

= k2 − M2

4 ± iM
√

k2 z3 ,

(6)

where z3 = k̂ · P̂ ∈ (−1, 1). This is the usual parabola in
the complex k2 plane with apex −M2/4. That is, a pole
at Z± = −m2

π (or along the contour of the parabola with
apex −m2

π) leads to the condition

16
3 S0(1 − s) = M2 − 4m2

π (7)

and therefore.

s = 1 + 3
16S0

(4m2
π − M2) . (8)

So it looks like above threshold M > 4mπ we have indeed
the situation that the poles cross over into the spacelike
region (s < 1). However, below threshold this cannot
happen. (The same analysis would work for the remain-
ing poles with X+ = (p2 + p3)2, etc.)

• Since you see a similar behavior at large quark
masses, but at the opposite side of the triangle:
Could it be that the Maris-Tandy scalar diquark
simply comes out very low, i.e., that the diquark
mass bends down at large quark masses and crosses
the threshold? Can you calculate scalar diquarks
too? Might be good to know as a check.

• This is all very interesting. I found a similar condi-
tion for the baryon, although the interpretation as
two-body poles at the border of the triangle doesn’t
work in that case (because it’s S3, the triangle is
bounded by the three quark momenta).
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Electron vs. muon g-2

Bijnens, Prades,  Mod. Phys. Lett. A22 (2007)
Jegerlehner, Ny�eler,  Phys. Rept.  477 (2009)
Hagiwara et al., J. Phys. G 38 (2011)

Exp: 

SM: 

QED:

Diff:

EW:
Hadronic:

VP (LO+HO)
LBL

11 659 208.9

11 658 

11 659 182.8

15.3

685.1
10.5

26.1

(6.3)

(0.0)
(0.2)
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(2.6)

(4.9)
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QED: Cs
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EW:
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0.00
0.02

(0.09)
(0.08)

(0.09)
(0.08)
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.81

.81

.73

.83

]10−[10ea ]10−[10µa
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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Apart from global factors k ·Q, the four tensor structures
corresponding to f3,4,7,8 are linear and the remaining four
are quadratic in the photon momentum.

The question remains whether Eq. (82) can be ob-
tained from a systematic construction principle. To this
end we define the quantities

tµνab := a · b δµν − bµaν ,

εµνab := γ5 εµναβaαbβ ,
(84)

with aµ, bµ ∈ {kµ, Qµ}. They are both regular in the
limits a → 0 or b → 0. tµνab is transverse to aµ and bν ,

aµ tµνab = 0 , tµνab bν = 0 , (85)

whereas εµνab is transverse to a and b in both Lorentz in-
dices. The usual transverse projectors can thus be writ-

ten as Tµν
Q = tµνQQ/Q2 and Tµν

Q′ = tµνQ′Q′/Q′2.
With the help of these definitions one can generate the

basis (82) as follows. Take the four tensor structures that
are independent of the photon momentum:

γν , [γν , /k] , kν , kν/k . (86)

Contract them with tµνQQ, tµνQk and εµνQk to generate eight
transverse basis elements that are kinematically indepen-
dent and linear or quadratic in the four-momentum Qµ:

tµνQQ





γν

[γν , /k]

kν

kν/k





= Q2





γµ
T

[γµ
T , /k]

kµ
T

kµ
T /k





,

tµνQk

{
γν

[γν , /k]

}
=

{
k ·Q γµ − kµ /Q

[k ·Q γµ − kµ /Q, /k]

}
,

εµνQk

{
γν

[γν , /k]

}
=

{
1
6 [γµ, /k, /Q]

tµνQk [γν , /k] − k2 [γµ, /Q]

}
.

(87)

Instead of using tµνQk and εµνQk, one could contract the four

elements in Eq. (86) also with tµνQγ = /Q δµν − γµQν and
use commutators where necessary. However, this does
not generate any new elements:

1
2

[
tµνQγ , γν

]
= − [γµ, /Q] ,

1
2

[
tµνQγ , γν , /k

]
= [γµ, /k, /Q] ,

tµνQγ kν = −4 tµνQk γν ,
[
tµνQγ kν , /k

]
= −tµνQk [γν , /k] .

(88)

Finally, attach appropriate factors k ·Q to ensure charge-
conjugation invariance of the dressing functions.

We will henceforth use Eq. (82) as our reference basis
for the transverse part of the fermion-photon vertex. We
write it in a compact way:

τµ
1 = tµνQQ γν ,

τµ
2 = tµνQQ k ·Q i

2 [γν , /k] ,

τµ
3 = i

2 [γµ, /Q] ,

τµ
4 = 1

6 [γµ, /k, /Q] ,

τµ
5 = tµνQQ ikν ,

τµ
6 = tµνQQ kν/k ,

τµ
7 = tµνQk k ·Q γν ,

τµ
8 = tµνQk

i
2 [γν , /k] .

(89)

The full vertex is thus given by Eq. (74), with the trans-
verse part

− iΓµ
T (k, Q) =

8∑

i=1

fi(k
2, k · Q, Q2) τµ

i (k, Q) . (90)

The dimensionful dressing functions fi(k
2, k ·Q, Q2) are

again even in k · Q. They are kinematically independent
and can remain constant at vanishing photon momen-
tum. The basis (89) is essentially identical to Eq. (A.8)
in Ref. [53] and Eq. (A2) in Ref. [55]. The relations be-
tween our τµ

i and the transverse tensor structures Tµ
i in

those papers are

τ1 = −T3 ,

τ2 = − 1
2 k ·Q T4 ,

τ3 = T5 ,

τ4 = T8 ,

τ5 = T1 ,

τ6 = 1
2 T2 ,

τ7 = − 1
2 k ·Q T6 ,

τ8 = 1
2 T7 .

(91)

The dressing functions associated with τ3 and τ4 con-
tribute to the onshell anomalous magnetic moment,
cf. Ref. [48] and Eq. (96) below, and τ7 constitutes the
transverse part of the Curtis-Pennington vertex [56].

Finally, to obtain a connection with the nucleon’s on-
shell current, we investigate the limit where the incoming
and outgoing fermion lines are taken on the mass shell,
i.e., k2

± = −m2 or

k2 = −m2 − Q2/4 , k · Q = 0 . (92)

The onshell vertex

Jµ(k, Q) = Λf
+ Γµ(k, Q) Λi

+

∣∣∣
Eq. (92)

(93)

is sandwiched between Dirac spinors that are eigenvec-
tors of the positive-energy projectors

Λf
+ = Λ+(k+),

Λi
+ = Λ+(k−),

Λ+(p) =
1+ /̂p

2
. (94)

By virtue of the projectors, only two of the basis elements
in Eq. (89) remain independent, and the vertex can be
written in the standard form

Jµ(k, Q) = iΛf
+

(
F1 γµ +

iF2

4m
[γµ, /Q]

)
Λi
+ , (95)

where F1, F2 are dimensionless functions of Q2 only. Via
Eq. (74) they consist of Ball-Chiu parts and transverse
components which are related to the functions ΣA, ∆A,
∆B and fj in the onshell limit:

F1(Q
2) = A(−m2) + 2m

[
B′(−m2) − mA′(−m2)

]

+ Q2

[
f1 − m (f5 + mf6) − f4 − mf8

2

] ∣∣∣∣∣
Eq. (92)

,

F2(Q
2)

2m
= f3 − mf4 −

[
B′(−m2) − mA′(−m2)

]

+
Q2

2

[
f5 + mf6 − f8

2

] ∣∣∣∣∣
Eq. (92)

.

(96)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
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T consists of eight independent tensor structures. An-
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T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
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to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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i
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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T + f2 k ·Q Q2 i
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i
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1
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2 [k ·Q γµ − kµ /Q, /k].
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It satisfies the requirements of Eq. (81) since
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f2 Q2 = g2 − g8 ,
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f4 = g4 ,

f5 Q2 = g5 ,
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... to Dyson-Schwinger equations

DSEs = quantum equations of motion:  
instead of calculating n-point functions directly,
derive eqs. of motion for them from path integral

Γ−e=

For reviews see:

Roberts, Williams, Prog. Part. Nucl. Phys. 33 (1994),
Alkofer, von Smekal, Phys. Rept. 353 (2001)
Fischer, J. Phys. G32 (2006)

S−e]ψ,A¯ψ,[D
∫

infinitely many coupled eqs.,
in practice truncations:
model / neglect higher
n-point functions to obtain
closed system

-1
=

-1
+

-1 -1
= ++

++ +

+

QCD’s classical action: Quantum “effective action”: 
]

µνFµνF4
1+ψ)m+A/ig

a

a+∂/ (ψ̄
[

x4d
∫

=

=

S

g g g 2

-1 -1 -1 -1
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Mesons

Eigenvalue spectrum of BS kernel:

1iλ
𝑃�           −𝑚��

,iψ)2P(iλ=iK ψ

most general Dirac-Lorentz structure,
Lorentz-invariant dressing functions:

pion is made of s waves and p waves!
(relative momentum ~ orbital angular momentum)

⊗] )P/q,/[4f+q/3f+P/2f+1f Color ⊗ Flavor

)2m−=2P, P·, q2q(if=if
⟹ 

5γ (

1
iλ

π π(1300)

π π(1300)

π(1800)?

The pion plays special role in hadron physics: 
quark-antiquark bound state ⟺ Goldstone boson of spontaneous chiral symmetry breaking

=
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Holl, Krassnigg, Roberts, PRC 70 (2004)
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Resonances?

Branch cuts & widths generated by 
meson-baryon interactions: Roper → 𝑁𝜋 , etc.

Without them: bound states without widths

Difficult to implement at quark-gluon level: 
complicated topologies beyond rainbow-ladder

‘pion-cloud effects’ affect masses 
and form factors in light-quark region

dynamical generation of resonances: 
start with ‘bare’ seed, hadronic 
interactions produce new poles

Different phenomenological pictures 
how this could happen: 

Three-quark vs. five-quark / 
molecular components

Re

Im

2P

2P

N(940)

N(1440)

N(1710)
N(1880)

)2P(G

Re

Im

2P

2P

N(940)N(1440)N(1710)N(1880)

= +

= +V

= +

= +
-1 -1

T = +

“         ”

“         ”

e.g. 
Suzuki et al.,
PRL 104 (2010)
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So what does it mean?

Results favor ‘mild’ scenario:

Mader, GE, Blank, Krassnigg,
PRD 84 (2011),

GE, Sanchis-Alepuz, Williams,
Alkofer, Fischer, 1606.09602 

Note: ‘bound states without widths’ doesn’t 
mean that 𝜌 → 𝜋𝜋,  𝛥 → 𝑁𝜋, . . . decays are zero!!

meson-baryon effects would merely
shift poles into complex plane

Effects on masses? Scale set by 𝑓� , 
but pion-cloud affects 𝑓� too
so only ‘non-trivial effects’ visible

Will be interesting to study 
transition form factors

spectrum generated by 
quark-gluon interactions

Re

Im

2P

2P

N(940)

N(1440)

N(1710)
N(1880)

)2P(G
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Structure properties

First three-body results similar
Alkofer, GE, Sanchis-Alepuz, Williams, Hyp. Int. 234 (2015)

*

Electric quadrupole ratio 
small & negative, encodes deformation.
No pion cloud necessary: OAM from p waves! 

Discrepancies mainly in magnetic dipole (𝐺� ): 
“Core + 25% pion cloud”

)
− −

All signatures of 1st radial excitation: 
partial-wave content, zero crossing

Roper transition form factors in 
qualitative agreement with experiment 
Segovia et al.,  PRL 115 (2015) 

Current-mass evolution of Roper 
similar to nucleon. Lattice?
GE, Fischer, Sanchis-Alepuz, 1607.05748

𝛾𝑁→𝛥 transition form factors:
GE, Nicmorus,  PRD 85 (2012)
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Tetraquarks are resonances

Light scalar mesons 𝜎, 𝜅, 𝑎₀, 𝑓₀ as tetraquarks:
solution of four-body equation reproduces mass pattern
GE, Fischer, Heupel,  PLB 753 (2016)

BSE dynamically generates meson poles in wave function,
drive 𝜎 mass from 1.5 GeV to ~350 MeV

Similar in meson-meson / diquark-antidiquark approximation
(analogue of quark-diquark for baryons) Heupel, GE, Fischer,  PLB 718 (2012)

Four quarks rearrange
to “meson molecule”

Tetraquarks are “dynamically 
generated resonances” 
(but from the quark level!)
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Form factors

Sketch of a generic electromagnetic form factor:

How can we calculate this from the quark level?

‘rainbow-ladder’

quark-photon vertex

quark propagator

Faddeev
amplitude

⟶

⟶

⟶
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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agator and free of kinematic singularities.
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i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ
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+ f3
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+ f7 k ·Q (k ·Q γµ − kµ /Q)
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2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
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2
,
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,
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(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector
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Q2
(78)

to the remaining elements from the first two columns of
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Fig. 1. Quark-photon vertex and the ρ−meson poles it contains.

conservation for electromagnetic form factors, the Goldberger-Treiman relation for
axial form factors and so on, so that no ’fine-tuning’ is necessary.

In order to calculate nucleon form factors and polarizabilities, we must couple
photons to nucleons in a symmetry-preserving way [17–19]. To this end, we should
first understand how a photon microscopically interacts with a quark. Two of the
relevant Green functions that encode this interaction are the quark-photon vertex
and the quark Compton vertex. Here I will discuss some of their properties, the
role of electromagnetic gauge invariance in determining their structure, and their
implications for hadron properties.

2. Quark-photon vertex

Several well-known characteristics of form factors are reflected in the nonper-
turbative structure of the dressed quark-photon vertex. The vertex is defined as the
γµ−contraction of the qq̄ four-point function, see Fig. 1. The four-point function
contains all intermediate hadronic states that can be formed by a valence quark and
antiquark. Therefore, its singularity structure in the vector channel will be inher-
ited by the quark-photon vertex, i.e., ’vector-meson dominance’ is implemented by
construction. On the other hand, the definition allows to derive an inhomogeneous
Bethe-Salpeter equation (BSE) for the vertex; it depends on the qq̄ kernel where
the truncation to rainbow-ladder is made. Its numerical solution has been first
achieved in Ref. [20] and nowadays become almost a routine task. However, even
before solving the vertex dynamically one can gain some insight based on general
properties alone.

Electromagnetic gauge invariance entails that the quark-photon vertex can be
separated into a ’gauge part’ and a purely transverse part:

Γµ(k, Q) =
[
iγµ ΣA + 2kµ(i/k ∆A + ∆B)

]
+
[
i

8∑

j=1

fj τµ
j (k, Q)

]
. (1)

Here, Q is the photon momentum and k = (k+ + k−)/2 the average momentum
of the quark legs, see Fig. 1. The gauge part in the first bracket is the Ball-Chiu
vertex [21] that satisfies the vector WTI. It is completely determined by the dressed
fermion propagator. At large Q2 it reproduces the tree-level structure, whereas the
nonperturbative dressing effects are contained in ΣA, ∆A and ΣB. These are sums
and difference quotients of the quark dressing functions A(p2) and B(p2):

ΣF (k, Q) =
F (k2

+) + F (k2
−)

2
, ∆F (k, Q) =

F (k2
+) − F (k2

−)

k2
+ − k2

−
, (2)

with F ∈ {A, B}. A(p2) approaches the quark wave-function renormalization con-
stant Z2 at large p2 and is nonperturbatively enhanced. The quark mass function
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition

−iΓµ
T = g1γ

µ
T + g2 k ·Q i

2 [γµ
T , /k]

+ g3
i
2 [γµ, /Q] + g4

1
6 [γµ, /k, /Q]

+ kµ
T

(
ig5 + g6 /k + g7 k ·Q /Q + g8

i
2 [/k, /Q]

)
,

(79)

where

γµ
T = Tµν

Q γν , kµ
T = Tµν

Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .

(83)
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truly kinematically independent is given by [53–55]

−iΓµ
T = f1 Q2 γµ

T + f2 k ·Q Q2 i
2 [γµ

T , /k]

+ f3
i
2 [γµ, /Q] + f4

1
6 [γµ, /k, /Q]

+ if5 Q2 kµ
T + f6 Q2 kµ

T /k

+ f7 k ·Q (k ·Q γµ − kµ /Q)

+ f8
i
2 [k ·Q γµ − kµ /Q, /k].

(82)

It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,

f3 = g3 ,

f4 = g4 ,

f5 Q2 = g5 ,

f6 Q2 = g6 ,

−f7 = g7 ,

f8 = g8 .
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A. Fermion-photon vertex

We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as

(+) γµ

(−) [γµ, /k]

(+) [γµ, /Q]

(+) [γµ, /k, /Q]

(+) kµ

(+) kµ/k

(−) kµ /Q

(+) kµ[/k, /Q]

(−) Qµ

(−) Qµ/k

(+) Qµ /Q

(−) Qµ[/k, /Q].

(75)

To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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Q γν , kµ
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Q kν . (80)

We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since
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where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions

ΣA(k, Q) :=
A(k2

+) + A(k2
−)

2
,

∆A(k, Q) :=
A(k2

+) − A(k2
−)

k2
+ − k2

−
,

∆B(k, Q) :=
B(k2

+) − B(k2
−)

k2
+ − k2

−

(73)

are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:
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BC(k, Q) + Γµ
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Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination
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for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector
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(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,
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We start with a discussion of the fermion-photon ver-
tex as it provides the template for the two-photon case.
It satisfies the Ward-Takahashi identity

Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
Eq. (70) is solved by the Ball-Chiu vertex [52]

Γµ
BC(k, Q) = iγµ ΣA + 2kµ(i/k ∆A + ∆B), (72)

where the functions
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
WTI:

Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
we illustrate the problem here in detail.

The general fermion-photon vertex with quantum
numbers JPC = 1−− vertex consists of 12 tensor struc-
tures which can be chosen as
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(+) [γµ, /Q]

(+) [γµ, /k, /Q]
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To ensure definite charge-conjugation symmetry (indi-
cated by the signs in the brackets) we have used the

commutator for the product of two γ matrices and the
totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
Q = δµν − QµQν

Q2
(78)

to the remaining elements from the first two columns of
Eq. (75) to obtain the basis decomposition
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where
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T = Tµν
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We have attached prefactors so that the scalar dressing
functions gi(k

2, k · Q, Q2) are even in k · Q and real for
k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
combinations

g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
sates the problem since g1, g2, g7, g8 do not need to vanish
individually when Q2 goes to zero.

A basis decomposition where all dressing functions are
truly kinematically independent is given by [53–55]
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It satisfies the requirements of Eq. (81) since

f1 Q2 = g1 + (k · Q)2g7 ,

f2 Q2 = g2 − g8 ,
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f5 Q2 = g5 ,
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Qµ Γµ(k, Q) = S−1(k+) − S−1(k−) , (70)

where Q is the photon momentum, k is the relative mo-
mentum of the quark, and k± = k ± Q/2 are the quark
momenta. The inverse dressed quark propagator reads

S−1(k) = i/k A(k2) + B(k2) , (71)

and the renormalization-point independent mass func-
tion of the fermion is given by M(k2) = B(k2)/A(k2).
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are completely determined by the dressed fermion prop-
agator and free of kinematic singularities.

The full vertex is then the sum of the Ball-Chiu part
and a transverse piece that is not constrained by the
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Γµ(k, Q) = Γµ
BC(k, Q) + Γµ

T(k, Q) . (74)

Γµ
T consists of eight independent tensor structures. An-

alyticity at vanishing photon momentum requires Γµ
T to

vanish in the limit Qµ = 0, either via appropriate mo-
mentum dependencies of the basis elements, vanishing
dressing functions, or kinematic relations between the
dressing functions in that limit. In order to find eight
kinematically independent dressing functions, we want
to express Γµ

T in a basis that is free of kinematic singu-
larities and ’minimal’ with respect to its powers in the
photon momentum. Since the construction of the two-
photon vertex is closely related to the one-photon case,
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cated by the signs in the brackets) we have used the
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totally antisymmetric combination

[A, B, C] := [A, B] C + [B, C] A + [C, A] B (76)

for three γ matrices. If the odd basis tensors are multi-
plied with a factor k · Q, the full vertex satisfies

Γµ(k, Q) = C Γµ(−k, −Q)TCT = −Γµ(k, −Q) (77)

with scalar dressing functions that are even in k · Q.
The transverse part of the vertex consists of eight

tensor structures that are constructed from Eq. (75).
The two elements [γµ, /Q] and [γµ, /k, /Q] are transverse by
themselves. In principle one could apply the transverse
projector

Tµν
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We have attached prefactors so that the scalar dressing
functions gi(k
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k2 > 0, Q2 ∈ R. However, since the projector (78) con-
tains a kinematic singularity at Q2 → 0, the resulting
dressing functions are kinematically dependent: the four
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g1 + (k · Q)2g7 , g2 − g8 , g5 , g6 (81)

must vanish with Q2 for Q2 → 0. Instead of the pro-
jector (78) one could equally apply Q2 Tµν

Q which has
no kinematic singularity; unfortunately this overcompen-
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Nucleon em. form factors

Three-body results:
all ingredients calculated, 
model dependence shown 
by bands  GE,  PRD 84 (2011)

⇒ “quark core without 
      pion-cloud effects”

electric proton form factor:
consistent with data, 
possible zero crossing 

magnetic form factors:
missing pion effects at low 𝑄�

Similar for axial & ps. FFs,
𝛥 elastic and 𝑁�𝛥𝛾 transition 
GE, Fischer,  EPJ A 48 (2012),  
Sanchis-Alepuz et al., PRD 87 (2013),   
Alkofer et al., Hyp. Int. 234 (2015)

Large 

Electric proton form factor 
at large momenta  Eichmann,  PRD 84 (2011)

Difference likely due to
two-photon corrections

Rosenbluth method suggested 
/  = const., in agreement 

with perturbative scaling

Polarization experiments at JLAB 
showed falloff in / , 
with possible zero crossing 

Faddeev result consistent with data:
OAM in nucleon amplitude

Underway: investigate two-photon effects
via Compton scattering amplitude

Guichon, Vanderhaeghen, PRL 91 (2003) 
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Nucleon em. form factors

Nucleon magnetic moments: 
isovector (p-n), isoscalar (p+n)

[𝜇�]

[𝜇�]

!!
But: pion-cloud cancels in 𝜅�  ⟺ quark core 

       Exp:    𝜅� = –0.12   
Calc:   𝜅� = –0.12(1)
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Axial form factors
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Timelike meson poles:
𝑎� in 𝐺�, 𝜋 & 𝜋(1300) in 𝐺� , 𝐺���

looks like magnetic form factors:
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𝛥 electromagnetic FFs   

Almost no experimental information since 𝛥 unstable:  𝛥 → 𝑁𝜋 

Magnetic moment 𝜇� ~ 3.5 with large errors (𝛥⁺).
But 𝛺⁻ (spin 3/2, sss) is stable w.r.t strong interaction,
magnetic moment |𝜇�| � 3.6(1).  Accidental?
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TABLE II. (Color online) Rest-frame partial-wave decomposi-
tion of nucleon and ∆−baryon in the quark-diquark approach.
The basis elements are characterized by their scalar and ax-
ialvector diquark content and their eigenvalues with respect
to quark-diquark spin (s) and orbital angular momentum (l).
The colored boxes highlight the dominant components; for
example, the dressing functions associated with τµ

4 and τµ
6

are much smaller than the remaining p−wave contributions.

positive-energy and Rarita-Schwinger projectors which
satisfy

Λ+(P ) u(P, s) = u(P, s) ,

Pµν(P )uν(P, s) = uµ(P, s) .
(13)

They are given by

Λ+ = 1
2 (1+ /̂P ) , Pµν = Λ+

(
Tµν
P − 1

3 γµ
T γν

T

)
, (14)

where P̂ = P/(iMB) is the normalized baryon momen-

tum, Tµν
P = δµν −P̂µP̂ ν is a transverse projector with re-

spect to P , and γµ
T = Tµν

P γν is the transverse γ−matrix.
The projectors inherit the constraints from the spinors:

/̂P Λ+ = Λ+ , P̂µPµν = γµPµν = 0 . (15)

Instead of p and P , the basis elements in Eqs. (11–12)
can be equally well expressed through orthonormal mo-
menta P̂µ and rµ := p̂T

µ
, i.e., such that r2 = P̂ 2 = 1

and r · P̂ = 0. The dependence on the Lorentz invari-
ants p2 and z is then carried by the coefficients fB

k only.
This simplifies the construction of an orthogonal basis
and is also convenient for practical calculations, e.g. in
the baryon’s rest frame, where P̂ and r are Euclidean
unit vectors.

The largest linearly independent set of basis elements
for the bound-state amplitude Γ0

N , Γµ
N and Γµν

∆ is given in
Eq. (B1). On the baryon’s mass shell, which is enforced

by the properties (15) of the projectors, the following
independent basis elements remain:

Γ0
N : {1, r/},

Γµ
N : {γµ

T , rµ, P̂µ} × {1, r/},

Γµν
∆ : {δµν , γµ

T rν , rµrν , P̂µrν} × {1, r/}.

(16)

These can be further orthonormalized and arranged ac-
cording to their (quark-diquark) spin and orbital angular
momentum content in the baryon’s rest frame, cf. App. B.
The resulting classification in s, p, d and f waves is illus-
trated in Tables I and II. We emphasize that p-wave con-
tributions to the bound-state amplitudes emerge quite
naturally because of Poincaré covariance. Those disap-
pear in the non-relativistic limit [64] but have important
consequences for the behavior of the form factors in Sec-
tion IV.

III. ELECTROMAGNETIC TRANSITION

A. N∆γ transition current

We now turn to the general properties of the N∆γ
transition current and its decomposition in terms of
Lorentz-invariant form factors. The current can be gener-
ically written as

Jµ,ρ(P, Q) = Pρα(Pf ) iγ5 Γαµ(P, Q) Λ+(Pi) , (17)

where Pi and Pf are the incoming nucleon and outgoing
∆ momenta, with P 2

i = −M2
N and P 2

f = −M2
∆. They can

be expressed through the photon momentum Q = Pf −Pi

and the average momentum P = (Pi+Pf )/2. The onshell
structure of the current is ensured by the projectors de-
fined in Eq. (14), i.e., the positive-energy projector Λ+ for
the nucleon and the Rarita-Schwinger projector Pρα for
the ∆-baryon. Eq. (17) is a matrix in spinor space; the
usual current matrix element 〈Pf , sf | Jµ | Pi, si〉 is ob-
tained upon contraction with the ∆ and nucleon spinors
from Eq. (13). The momentum dependence of the projec-
tors implies that the γ−matrices contained in the Rarita-
Schwinger projector Pρα(Pf ) are now transverse with re-
spect to Pf . We extracted an explicit factor γ5 in Eq. (17)
so that the remainder Γαµ, which will be specified below,
has positive parity.

Similarly to the nucleon and ∆ bound-state ampli-
tudes, the composition of the four-point function Γαµ in
Eq. (17) is determined by Poincaré covariance. For its
explicit construction it is again convenient to work with
orthogonal momenta. This is not yet the case for P and
Q because the non-vanishing N -∆ mass difference entails
P · Q �= 0, cf. Eq. (C3). We take instead the component
of P transverse to Q:

Pµ
T = Tµν

Q P ν = Pµ − (P · Q̂) Q̂µ , (18)

and normalize it to unity: Kµ := P̂T

µ
. Here,

Tµν
Q = δµν − Q̂µQ̂ν (19)
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are much smaller than the remaining p−wave contributions.

positive-energy and Rarita-Schwinger projectors which
satisfy

Λ+(P ) u(P, s) = u(P, s) ,

Pµν(P )uν(P, s) = uµ(P, s) .
(13)

They are given by

Λ+ = 1
2 (1+ /̂P ) , Pµν = Λ+

(
Tµν
P − 1

3 γµ
T γν

T

)
, (14)

where P̂ = P/(iMB) is the normalized baryon momen-

tum, Tµν
P = δµν −P̂µP̂ ν is a transverse projector with re-

spect to P , and γµ
T = Tµν

P γν is the transverse γ−matrix.
The projectors inherit the constraints from the spinors:

/̂P Λ+ = Λ+ , P̂µPµν = γµPµν = 0 . (15)
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, i.e., such that r2 = P̂ 2 = 1

and r · P̂ = 0. The dependence on the Lorentz invari-
ants p2 and z is then carried by the coefficients fB

k only.
This simplifies the construction of an orthogonal basis
and is also convenient for practical calculations, e.g. in
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for the bound-state amplitude Γ0
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∆ is given in
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These can be further orthonormalized and arranged ac-
cording to their (quark-diquark) spin and orbital angular
momentum content in the baryon’s rest frame, cf. App. B.
The resulting classification in s, p, d and f waves is illus-
trated in Tables I and II. We emphasize that p-wave con-
tributions to the bound-state amplitudes emerge quite
naturally because of Poincaré covariance. Those disap-
pear in the non-relativistic limit [64] but have important
consequences for the behavior of the form factors in Sec-
tion IV.

III. ELECTROMAGNETIC TRANSITION

A. N∆γ transition current

We now turn to the general properties of the N∆γ
transition current and its decomposition in terms of
Lorentz-invariant form factors. The current can be gener-
ically written as

Jµ,ρ(P, Q) = Pρα(Pf ) iγ5 Γαµ(P, Q) Λ+(Pi) , (17)

where Pi and Pf are the incoming nucleon and outgoing
∆ momenta, with P 2

i = −M2
N and P 2

f = −M2
∆. They can

be expressed through the photon momentum Q = Pf −Pi

and the average momentum P = (Pi+Pf )/2. The onshell
structure of the current is ensured by the projectors de-
fined in Eq. (14), i.e., the positive-energy projector Λ+ for
the nucleon and the Rarita-Schwinger projector Pρα for
the ∆-baryon. Eq. (17) is a matrix in spinor space; the
usual current matrix element 〈Pf , sf | Jµ | Pi, si〉 is ob-
tained upon contraction with the ∆ and nucleon spinors
from Eq. (13). The momentum dependence of the projec-
tors implies that the γ−matrices contained in the Rarita-
Schwinger projector Pρα(Pf ) are now transverse with re-
spect to Pf . We extracted an explicit factor γ5 in Eq. (17)
so that the remainder Γαµ, which will be specified below,
has positive parity.

Similarly to the nucleon and ∆ bound-state ampli-
tudes, the composition of the four-point function Γαµ in
Eq. (17) is determined by Poincaré covariance. For its
explicit construction it is again convenient to work with
orthogonal momenta. This is not yet the case for P and
Q because the non-vanishing N -∆ mass difference entails
P · Q �= 0, cf. Eq. (C3). We take instead the component
of P transverse to Q:

Pµ
T = Tµν

Q P ν = Pµ − (P · Q̂) Q̂µ , (18)

and normalize it to unity: Kµ := P̂T

µ
. Here,

Tµν
Q = δµν − Q̂µQ̂ν (19)
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is the transverse projector with respect to Q. Together

with the normalized photon momentum Q̂, the current
is now characterized by two orthonormal four-momenta,

K and Q̂ (instead of P and Q, or Pi and Pf ), which will
simplify its structure considerably.

Using this construction, the most general form of the
vertex Γαµ that is compatible with Poincaré covariance,
positive parity and current conservation can be written
as (cf. App. C 2):

Γαµ = iQ̂α (g1γ
µ
T + g2 Kµ) − g3 Tαµ

Q , (20)

where γµ
T is transverse to Q. It depends on three real and

dimensionless form factors gi(Q
2).

For comparison with experiment, it is more convenient
to work with the Jones-Scadron form factors G�

M (Q2),
G�

E(Q2) and G�
C(Q2) which are related to the pion elec-

troproduction multipole amplitudes at the ∆−resonance
position and can be expressed in terms of helicity ampli-
tudes [2, 65]. The respective decomposition of the vertex
Γαµ is:

Γαµ = b

[
iω

2λ+
(G�

M − G�
E) γ5 εαµγδKγQ̂δ

− G�
E Tαγ

Q T γµ
K − iτ

ω
G�

C Q̂αKµ

]
,

(21)

where we used the dimensionless variables

τ :=
Q2

2 (M2
∆ + M2

N )
, λ± :=

(M∆ ± MN )2 + Q2

2 (M2
∆ + M2

N )
(22)

as well as ω :=
√

λ+λ− and b :=
√

3
2 (1 + M∆/MN ).

We show in App. C 2 that the vertices in (20) and (21)
are equivalent when contracted with the projectors in the
current matrix (17), and the relations between the gi and
the Jones-Scadron form factors are stated in Eq. (C18).

Eq. (21) is identical with the standard Jones-Scadron
expression [2, 65] which is given in terms of the Lorentz
structures

εαµγδP γ
i P δ

f

M2
∆ + M2

N

= iω εαµγδKγQ̂δ ,

εαλγδP γ
i P δ

f εµλρσP ρ
i Pσ

f

(M2
∆ + M2

N )2
= −ω2 Tαγ

Q T γµ
K ,

Qα
(
Q2Pµ − P · Q Qµ

)

(M2
∆ + M2

N )2
= 2iωτ Q̂αKµ .

(23)

These relations can be verified by expressing Pi and Pf

through P and Q and subsequently in terms of the unit

vectors K and Q̂ via Eq. (C6).

B. Electromagnetic current in the quark-diquark
approach

The computation of the N∆γ transition matrix of
Eqs. (17) and (21) from its substructure in QCD re-
quires a microscopic description of its ingredients. A

(a)

(b)

(c)

(d)

(e)

’

’

FIG. 4. (Color online) General expression for the N∆γ tran-
sition current in the quark-diquark approach, see Eqs. (24)
and App. D.

systematic construction principle to derive the coupling
of a hadron to an external current is the ’gauging of
equations’ method of Refs. [66–68]. The procedure was
applied in [69] to derive the relevant diagrams in the
quark-diquark system; recent discussions and applica-
tions in the three-quark framework can be found in
Refs. [27, 37, 70].

Applied to our case, the basic idea is that the N∆γ
transition matrix element is the N∆ pole residue of the
quark-diquark Green function that is struck by an exter-
nal photon. If the current systematically couples to all
internal constituents, which means that it has the formal
properties of a derivative, electromagnetic current con-
servation is automatically satisfied. The photon coupling
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FIG. 6. (Color online) Q2−evolution of the magnetic dipole
form factor G�

M in comparison with experimental data from
Refs. [82–86]. The band denotes the model dependence as
discussed in the text.

a variation of the parameter ρ3 ∈ [0, 0.15] into account;
the central value of that interval was used in Ref. [39]
to maximize agreement for nucleon electromagnetic form
factors at larger Q2. The combined model dependence,
stemming from the the seagull variation together with
the η dependence in the effective interaction, leads to
the colored bands in Figs. (6–8).

The Jones-Scadron form factors G�
M (Q2), G�

E(Q2) and
G�

C(Q2) are finally extracted from the Dirac traces in
Eq. (C19). Since the approach is Poincaré-covariant, the
results are independent of the choice of reference frame.
In order to avoid complex continuations for the radial
momentum variables in the N and ∆ bound-state am-
plitudes, we work in the frame where the photon mo-
mentum is purely real: Q = (0, 0, |Q|, 0) or, expressed in

terms of the unit vectors defined in Section C, Q̂ = e3 and
K = e4. The singularities in the quark and diquark prop-
agators that enter the form factor integrals restrict the
accessible domain of photon momenta to Q2 � 2.5 GeV2,
see App. D 2. This value is quite small and due to the
quark-diquark description; a genuine three-body calcu-
lation would be able to reach Q2 values roughly twice
as large. In addition, the kinematic dependence on the
non-vanishing N -∆ mass difference also imposes a lower
limit for Q2. In order to obtain results at Q2 = 0, we ex-
trapolate the form factor results at non-zero momentum
transfer using Padé approximants. The extrapolation re-
gions are indicated by the dashed margins in Figs. (6–7).

A. Q2 dependence of the form factors

The N∆γ transition current is determined by the
three Jones-Scadron form factors G�

M (Q2), G�
E(Q2) and

MN M∆ G�
M (0) REM (0) RSM (0)

Exp. 0.94 1.23 3.02(3) −2.5(5)

Calc. 0.94(1) 1.27(3) 2.23(2) −2.3(3) −2.2(6)

TABLE III. Results at the physical u/d mass compared to ex-
periment. Nucleon and ∆ masses are in units of GeV, G�

M (0)
is dimensionless, and the ratios REM and RSM are given in
percent. The experimental values for G�

M (0) and REM (0) are
the PDG values [87]. The parentheses in our results indicate
the combined model dependence as discussed in the text.

G�
C(Q2) which are experimentally extracted from the

multipole amplitudes in pion electroproduction [1, 2].
The process is dominated by a magnetic dipole transi-
tion (M1) which, in a quark-model picture, amounts to
a spinflip of a quark and is encoded in the form fac-
tor G�

M (Q2). Its static experimental value is G�
M (0) =

3.02(3) [87]; experimental data exist in the range up to
Q2 ∼ 8 GeV2. The remaining electric (E2) and Coulomb
(C2) quadrupole contributions are much smaller and
measure the deformation in the transition. They are ex-
pressed by the form factors G�

E(Q2) and G�
C(Q2) which

are usually related to the magnetic dipole form factor
through the form factor ratios

REM = − G�
E

G�
M

, RSM = − |Q|
2M∆

G�
C

G�
M

, (32)

where |Q| denotes the magnitude of the photon three-
momentum in the ∆ rest frame. It can be expressed in
terms of Lorentz-invariant variables via

|Q|
2M∆

=
ω

1 + 2δ
, (33)

where ω was defined below Eq. (22) and δ is related to
the N–∆ mass difference, cf. Eq. (C2):

δ =
M2

∆ − M2
N

2 (M2
∆ + M2

N )
. (34)

Our result for the magnetic dipole form factor G�
M (Q2)

is shown in Fig. 6. We find good agreement with exper-
imental data above Q2 ∼ 1 GeV2, whereas the quark-
diquark result underestimates these data by ∼ 25% in
the limit Q2 = 0, cf. Table III. This is comparable
to constituent-quark model predictions [18], where the
long-standing discrepancy with the data has been at-
tributed to missing meson-cloud contributions. Their
impact has been studied with dynamical reaction mod-
els [7, 91], where the ’bare’ ∆ resonance extracted from
the Nγ� → Nπ scattering amplitude corresponds to the
quark-core contribution and meson-cloud effects are gen-
erated via rescattering processes. In these analyses the
pion cloud is sizeable and accounts for ∼ 30% of G�

M (0).
Similar conclusions have been found in the cloudy bag
model [12, 13] or covariant chiral quark models [18].

Form factors at 𝑄²�0: 

charge
electric quadrupole moment

magnetic dipole moment
magnetic octupole moment

6

are significantly suppressed compared to this structure
which corresponds to τµρ

1 = δµρ in Eq. (9). A similar
observation holds for the nucleon amplitude and might
indicate that orbital angular-momentum correlations in
these baryons’ amplitudes are dominated by pionic effects
which are absent in our setup.
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A. Electromagnetic current operator

Having numerically calculated the ∆-baryon ampli-
tudes, we proceed with the construction of the ∆ elec-
tromagnetic current. It can be written in the form
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which is derived in App. B 2. The exchanged photon
momentum is denoted by Q = Pf − Pi, where Pi and
Pf are the initial and final momenta of the ∆ and P =
(Pi + Pf )/2 is its average total momentum. The Rarita-
Schwinger projectors were defined in Eq. (10).

The electromagnetic current is expressed in terms of
four form factors F �

i (Q2). The experimentally mea-
sured ∆ form factors – Coulomb monopole GE0, mag-
netic dipole GM1, electric quadrupole GE2, and magnetic
octupole GM3 – can be expressed through linear combi-
nations of the F �

i (Q2) [78, 79]:

GE0
:=

(
1 +

2τ

3

)
(F �

1 − τF �
2 ) − τ

3
(1 + τ) (F �

3 − τF �
4 ) ,

GM1 :=

(
1 +

4τ

5

)
(F �

1 + F �
2 ) − 2τ

5
(1 + τ) (F �

3 + F �
4 ) ,

GE2 := (F �
1 − τF �

2 ) − 1

2
(1 + τ) (F �

3 − τF �
4 ) ,

GM3 := (F �
1 + F �

2 ) − 1

2
(1 + τ) (F �

3 + F �
4 ) . (12)

Their static dimensionless values are given by
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where e∆ ∈ {2, 1, 0, −1} is the ∆ charge, µ∆ its magnetic
dipole moment, Q the electric quadrupole moment, and
O the magnetic octupole moment. Equivalently, one has

F �
1 (0) = e∆ ,

F �
3 (0) = e∆ − Q ,

F �
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F �
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These form factors are dimensionless. Their dimensionful
values are given by
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=
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2M3
∆
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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B. Construction of the electromagnetic current

To compute the electromagnetic properties of the ∆-
baryon in a given framework, one must specify how the
photon couples to its constituents. In the quark-diquark
context this amounts to resolving the coupling of the pho-
ton to the dressed quark, to the diquark, and to the inter-
action between them, where the incoming and outgoing
baryon states are described by the quark-diquark ampli-
tudes of Eq. (9).

The construction of this current is based on a proce-
dure which automatically satisfies electromagnetic gauge
invariance [80, 81]. The corresponding diagrams are de-
picted in Fig. 5 and worked out in detail in App. C. The
upper left diagram describes the impulse-approximation
coupling of the photon to the dressed quark and involves
the quark-photon vertex. The lower left diagram is the
respective coupling to the diquark and depends on the
axial-vector diquark-photon vertex. The upper right di-
agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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action between them, where the incoming and outgoing
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tudes of Eq. (9).
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consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
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In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
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meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
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respective coupling to the diquark and depends on the
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diagrams its coupling to the diquark amplitudes which
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Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
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In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
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agram depicts the photon’s coupling to the exchanged
quark in the quark-diquark kernel, and the lower two
diagrams its coupling to the diquark amplitudes which
involve seagull vertices.

At the level of the constituents, electromagnetic cur-
rent conservation QµJµ,ρσ = 0 translates to Ward-
Takahashi identities which constrain these vertices and
relate them to the previously determined quark and di-
quark propagators and diquark amplitudes. Neverthe-
less, the vertices may involve parts transverse to the
photon momentum which are not constrained by current
conservation and yet encode important physics. A self-
consistent determination of such transverse parts is in
principle possible but requires certain numerical effort.
For instance, the quark-photon vertex can be computed
from its rainbow-ladder truncated inhomogeneous Bethe-
Salpeter equation which unambiguously fixes its trans-
verse contribution [82]. As expected from vector-meson
dominance models, the latter exhibits a ρ−meson pole at
Q2 = −m2

ρ.

In the present calculation we construct the quark-
photon vertex from its component fixed by the WTI,
i.e. the Ball-Chiu vertex, augmented by a transverse ρ-
meson pole contribution that is modeled after the result
in [82]. An analogous construction is used for the axial-
vector seagull vertex. Having fixed those, the axial-vector
diquark-photon vertex is completely specified. The de-
tails of the construction are presented in Apps. C 2–C 4.
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