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Status of (g − 2)µ, experiment vs SM

Hagiwara et al. 2012
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Status of (g − 2)µ, experiment vs SM

aµ

[

10−11
]

∆aµ

[

10−11
]

experiment 116 592 089. 63.

QED O(α) 116 140 973.21 0.03

QED O(α2) 413 217.63 0.01

QED O(α3) 30 141.90 0.00

QED O(α4) 381.01 0.02

QED O(α5) 5.09 0.01

QED total 116 584 718.95 0.04

electroweak, total 153.6 1.0

HVP (LO) [Hagiwara et al. 11] 6 949. 43.
HVP (NLO) [Hagiwara et al. 11] −98. 1.

HLbL [Jegerlehner-Nyffeler 09] 116. 40.
HVP (NNLO) [Kurz, Liu, Marquard, Steinhauser 14] 12.4 0.1

HLbL (NLO) [GC, Hoferichter, Nyffeler, Passera, Stoffer 14] 3. 2.

theory 116 591 855. 59.
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◮ Hadronic contributions responsible for most of the theory

uncertainty

◮ Hadronic vacuum polarization (HVP) can be systematically

improved
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Hadronic light-by-light: irreducible uncertainty?

◮ Hadronic contributions responsible for most of the theory

uncertainty

◮ Hadronic vacuum polarization (HVP) can be systematically

improved

◮ basic principles: unitarity and analyticity
◮ direct relation to experiment: total hadronic cross section

σtot(e
+e− → γ∗ → hadrons)

◮ dedicated e+e− program (BaBar, Belle, BESIII, CMD3,

KLOE2, SND)

(but going much below 1% is hard – dealing with radiative corrections poses nontrivial problems)
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Hadronic light-by-light: irreducible uncertainty?

◮ Hadronic contributions responsible for most of the theory

uncertainty

◮ Hadronic vacuum polarization (HVP) can be systematically

improved

◮ Hadronic light-by-light (HLbL) is more problematic:

◮ 4-point fct. of em currents in QCD

◮ “it cannot be expressed in terms of

measurable quantities”

◮ up to now, only model calculations

◮ lattice QCD not yet competitive

(but making progress)
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Different evaluations of HLbL

Jegerlehner Nyffeler 2009

◮ large uncertainties (and differences among calculations) in

individual contributions

◮ pseudoscalar pole contributions most important

◮ second most important: pion loop, i.e. two-pion cuts

(K s are subdominant)

◮ heavier single-particle poles decreasingly important

(unless one models them to resum the high-energy tail)
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Approaches to Hadronic light-by-light

◮ Model calculations

◮ ENJL Bijnens, Pallante, Prades (95-96)

◮ NJL and hidden gauge Hayakawa, Kinoshita, Sanda (95-96)

◮ nonlocal χQM Dorokhov, Broniowski (08)

◮ AdS/CFT Cappiello, Cata, D’Ambrosio (10)

◮ Dyson-Schwinger Goecke, Fischer, Williams (11)

◮ constituent χQM Greynat, de Rafael (12)

◮ resonances in the narrow-width limit Pauk, Vanderhaeghen (14)

◮ Impact of rigorously derived constraints

◮ high-energy constraints taken into account in several models above

addressed specifically by Knecht, Nyffeler (01)

◮ high-energy constraints related to the axial anomaly Melnikov, Vainshtein (04) and Nyffeler (09)

◮ sum rules for γ∗
γ → X Pascalutsa, Pauk, Vanderhaeghen (12)

see also: workshop MesonNet (13)

◮ low-energy constraints–pion polarizabilities Engel, Ramsey-Musolf (13)

◮ Lattice Blum et al. (05,12)
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Our approach to hadronic light-by-light

We address the calculation of the hadronic light-by-light tensor

◮ model independent ⇒ rely on dispersion relations

(or at least on a dispersive approach/language)

◮ as data-driven as possible

◮ takes into account high-energy constraints

[OPE, perturbative QCD]

(exact implementation not discussed here)

Alternative dispersive approach for the µ-FF → talk by M. Vanderhaeghen
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Some notation

HLbL tensor:

Πµνλσ = i3
∫

dx

∫

dy

∫

dz e−i(x·q1+y·q2+z·q3)〈0|T
{

jµ(x)jν(y)jλ(z)jσ(0)
}

|0〉

where jµ(x) =
∑

i Qi q̄i(x)γ
µqi(x), i = u, d , s

q4 = k = q1 + q2 + q3 k2 = 0

with Mandelstam variables

s = (q1 + q2)
2 t = (q1 + q3)

2 u = (q2 + q3)
2
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Some notation

HLbL tensor:

Πµνλσ = i3
∫

dx

∫

dy

∫

dz e−i(x·q1+y·q2+z·q3)〈0|T
{

jµ(x)jν(y)jλ(z)jσ(0)
}

|0〉

where jµ(x) =
∑

i Qi q̄i(x)γ
µqi(x), i = u, d , s

q4 = k = q1 + q2 + q3 k2 = 0

General Lorentz-invariant decomposition:

Πµνλσ = gµνgλσΠ1+gµλgνσΠ2+gµσgνλΠ3+
∑

i,j,k ,l

q
µ
i qν

j qλ
k qσ

l Π
4
ijkl+. . .

consists of 138 scalar functions {Π1,Π2, . . .}, but in d = 4 only

136 are linearly independent Eichmann et al. (14) and his talk
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Some notation

HLbL tensor:

Πµνλσ = i3
∫

dx

∫

dy

∫

dz e−i(x·q1+y·q2+z·q3)〈0|T
{

jµ(x)jν(y)jλ(z)jσ(0)
}

|0〉

where jµ(x) =
∑

i Qi q̄i(x)γ
µqi(x), i = u, d , s

q4 = k = q1 + q2 + q3 k2 = 0

General Lorentz-invariant decomposition:

Πµνλσ = gµνgλσΠ1+gµλgνσΠ2+gµσgνλΠ3+
∑

i,j,k ,l

q
µ
i qν

j qλ
k qσ

l Π
4
ijkl+. . .

consists of 138 scalar functions {Π1,Π2, . . .}, but in d = 4 only

136 are linearly independent Eichmann et al. (14) and his talk

Constraints due to gauge invariance? (see also Eichmann, Fischer, Heupel (2015))
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Detour: the subprocess γ∗γ∗ → ππ

Consider γ∗(q1, λ1)γ
∗(q2, λ2) → πa(p1)π

b(p2):

W
µν
ab (p1, p2, q1) = i

∫

d4x e−iq1·x〈πa(p1)π
b(p2)|T{jµem(x)j

ν
em(0)}|0〉

General tensor decomposition (qi , i = 1, . . . , 3, q3 = p2 − p1):

Wµν = gµνW1 +
∑

i,j

q
µ
i qν

j W
ij
2

gives ten independent scalar functions.

Gauge invariance requires:

q
µ
1 Wµν = qν

2Wµν = 0
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Gauge invariance: Bardeen-Tung-Tarrach approach

Consider the projector Bardeen, Tung (68)

Iµν = gµν − q
µ
2 qν

1

q1 · q2

which satisfies

Iµ
λWλν = WµλIλν = Wµν , q

µ
1 Iµν = qν

2 Iµν = 0

and contract it twice with Wµν , leaving it invariant:

Wµν = Iµµ′ Iν′νWµ′ν′ =
5

∑

i=1

T̄ i
µνĀi =

5
∑

i=1

T i
µνAi

The Āi are free of kinematic singularities, but have zeros. To

remove the zeros from the Āi ⇒ remove the poles from the T̄
µν
i
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Gauge invariance: Bardeen-Tung-Tarrach approach

T
µν

1 = q1 · q2gµν − q
µ

2 qν
1 ,

T
µν

2 = q2
1q2

2gµν + q1 · q2q
µ

1 qν
2 − q2

1q
µ

2 qν
2 − q2

2q
µ

1 qν
1 ,

T
µν

3 = q2
1q2 · q3gµν + q1 · q2q

µ

1 qν
3 − q2

1q
µ

2 qν
3 − q2 · q3q

µ

1 qν
1 ,

T
µν

4 = q2
2q1 · q3gµν + q1 · q2q

µ

3 qν
2 − q2

2q
µ

3 qν
1 − q1 · q3q

µ

2 qν
2 ,

T
µν
5 = q1 · q3q2 · q3gµν + q1 · q2q

µ

3 qν
3 − q1 · q3q

µ

2 qν
3 − q2 · q3q

µ

3 qν
1 ,

This is a basis of gauge-invariant tensors, but for q1 · q2 = 0 it
becomes degenerate: need one more structure: Tarrach (75)

T
µν

6 =
(

q2
1q

µ

3 − q1 · q3q
µ

1

) (

q2
2qν

3 − q2 · q3qν
2

)



Intro HLbL: gauge & crossing HLbL dispersive Conclusions

Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to Πµνλσ one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)

◮ 43 basis tensors (BT)

◮ 11 additional ones (T)

◮ of these 54 only 7 are completely independent

Πµνλσ =
54
∑

i=1

T
µνλσ
i Πi
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Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to Πµνλσ one ends
up with: GC, Hoferichter, Procura, Stoffer (2015)

T
µνλσ
1

= ǫ
µναβ

ǫ
λσγδ

q1αq2βq3γq4δ,

T
µνλσ
4

=
(

q
µ
2

q
ν
1 − q1 · q2g

µν
)(

q
λ
4 q

σ
3 − q3 · q4g

λσ
)

,

T
µνλσ
7

=
(

q
µ
2

q
ν
1 − q1 · q2g

µν
)(

q1 · q4

(

q
λ
1 q

σ
3 − q1 · q3g

λσ
)

+ q
λ
4 q

σ
1 q1 · q3 − q

λ
1 q

σ
1 q3 · q4

)

,

T
µνλσ
19

=
(

q
µ
2

q
ν
1 − q1 · q2g

µν
)(

q2 · q4

(

q
λ
1 q

σ
3 − q1 · q3g

λσ
)

+ q
λ
4 q

σ
2 q1 · q3 − q

λ
1 q

σ
2 q3 · q4

)

,

T
µνλσ
31

=
(

q
µ
2

q
ν
1 − q1 · q2g

µν
)(

q
λ
2 q1 · q3 − q

λ
1 q2 · q3

)(

q
σ
2 q1 · q4 − q

σ
1 q2 · q4

)

,

T
µνλσ
37

=
(

q
µ
3

q1 · q4 − q
µ
4

q1 · q3

) (

q
ν
3 q

λ
4 q

σ
2 − q

ν
4 q

λ
2 q

σ
3 + g

λσ (

q
ν
4 q2 · q3 − q

ν
3 q2 · q4

)

+ g
νσ

(

q
λ
2 q3 · q4 − q

λ
4 q2 · q3

)

+ g
λν (

q
σ
3 q2 · q4 − q

σ
2 q3 · q4

)

)

,

T
µνλσ
49

= q
σ
3

(

q1 · q3q2 · q4q
µ
4

g
λν

− q2 · q3q1 · q4q
ν
4 g

λµ
+ q

µ
4

q
ν
4

(

q
λ
1 q2 · q3 − q

λ
2 q1 · q3

)

+ q1 · q4q
µ
3

q
ν
4 q

λ
2 − q2 · q4q

µ
4

q
ν
3 q

λ
1 + q1 · q4q2 · q4

(

q
ν
3 g

λµ
− q

µ
3

g
λν

) )

− q
λ
4

(

q1 · q4q2 · q3q
µ
3

g
νσ

− q2 · q4q1 · q3q
ν
3 g

µσ
+ q

µ
3

q
ν
3

(

q
σ
1 q2 · q4 − q

σ
2 q1 · q4

)

+ q1 · q3q
µ
4

q
ν
3 q

σ
2 − q2 · q3q

µ
3

q
ν
4 q

σ
1 + q1 · q3q2 · q3

(

q
ν
4 g

µσ
− q

µ
4

g
νσ

) )

+ q3 · q4

( (

q
λ
1 q

µ
4

− q1 · q4g
λµ

)

(

q
ν
3 q

σ
2 − q2 · q3g

νσ)

−

(

q
λ
2 q

ν
4 − q2 · q4g

λν
) (

q
µ
3

q
σ
1 − q1 · q3g

µσ
) )

.
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Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to Πµνλσ one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)

◮ 43 basis tensors (BT)

◮ 11 additional ones (T)

◮ of these 54 only 7 are completely independent

◮ all remaining 47 can be obtained by crossing

transformations of these 7

Πµνλσ =
54
∑

i=1

T
µνλσ
i Πi
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◮ 43 basis tensors (BT)

◮ 11 additional ones (T)

◮ of these 54 only 7 are completely independent

◮ all remaining 47 can be obtained by crossing
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◮ the dynamical calculation needed to fully determine the

LbL tensor concerns these 7 scalar amplitudes
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Back to hadronic light-by-light

Applying the Bardeen-Tung-Tarrach method to Πµνλσ one ends

up with: GC, Hoferichter, Procura, Stoffer (2015)

◮ 43 basis tensors (BT)

◮ 11 additional ones (T)

◮ of these 54 only 7 are completely independent

◮ all remaining 47 can be obtained by crossing

transformations of these 7

◮ the dynamical calculation needed to fully determine the

LbL tensor concerns these 7 scalar amplitudes

Πµνλσ =
54
∑

i=1

T
µνλσ
i Πi

The 54 scalar functions Πi are free of kinematic singularities

and zeros and as such are amenable to a dispersive treatment
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HLbL contribution to aµ

From gauge invariance:

Πµνλσ

(

q1,q2, k − q1 − q2

)

= −kρ ∂

∂kσ
Πµνλρ

(

q1,q2, k − q1 − q2

)

.

Contribution to aµ: m := mµ

aµ =
−1

48m
Tr

{

(

/p + m
)

[γρ, γσ]
(

/p + m
)

ΓHLbL
ρσ

(

p
)

}

Γρσ = e6

∫

d4q1

(2π)4

∫

d4q2

(2π)4

1

q2
1q2

2(q1 + q2)2

γµ
(

/p+ /q1+m
)

γλ
(

/p− /q2+m)γν

(

(p+q1)2−m2
)(

(p−q2)2−m2
)×

× ∂

∂kρ
Πµνλσ(q1,q2, k − q1 − q2)

∣

∣

∣

∣

k=0

Thanks to BTT we can take the limit kµ → 0 explicitly here

(no kinematic singularities!)
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Master Formula

aHLbL
µ =−e6

∫

d4q1

(2π)4

d4q2

(2π)4

∑12
i=1 T̂i(q1,q2;p)Π̂i(q1,q2,−q1 − q2)

q2
1q2

2(q1 + q2)2[(p + q1)2 − m2
µ][(p − q2)2 − m2

µ]

◮ T̂i : known kernel functions

◮ Π̂i : linear combinations of the Πi

◮ 5 integrals can be performed with Gegenbauer polynomial

techniques

GC, Hoferichter, Procura, Stoffer (2015)
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Master Formula

After performing the 5 integrations:

aHLbL
µ =

2α3

3π2
×

×
∫

∞

0

dQ1

∫

∞

0

dQ2

∫ 1

−1

dτ
√

1 − τ2Q3
1Q3

2

12
∑

i=1

Ti(Q1,Q2, τ)Π̄i(Q1,Q2, τ)

where Q
µ

i are the Wick-rotateda four-momenta and τ the

four-dimensional angle between Euclidean momenta:

Q1 · Q2 = |Q1||Q2|τ

The integration variables Q1 := |Q1|, Q2 := |Q2|.

GC, Hoferichter, Procura, Stoffer (2015)

aWick rotation can be performed safely here, even in the presence of

anomalous cuts.
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: known

Projection on the BTT basis: done

Our master formula=explicit expressions in the literature
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

In JHEP ’14:

F V
π

(

q2
1

)

F V
π

(

q2
2

)

F V
π

(

q2
3

)×













Contribution with two simultaneous cuts

– analytic properties like the box diagram in sQED

– triangle and bulb diagram required by gauge invariance

– multiplication with F V
π gives the correct q2 dependence

Claim: FsQED is not an approximation!
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

In JHEP ’15, with BTT:

– we have constructed a Mandelstam representation for the

contribution of the 2-pion cut with LHC due to a pion pole

– we have explicitly checked that this is identical to FsQED

Proven: FsQED is not an approximation!
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

The “rest” with 2π intermediate states has cuts only in one

channel and will be

calculated dispersively after partial-wave expansion
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Setting up the dispersive calculation

We split the HLbL tensor as follows:

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Contributions of cuts with anything else other than one and two

pions in intermediate states will not be discussed here
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Pion-pole contribution

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·

Pion pole: Ππ0-pole
i (s, t , u) =

ρi;s

s−M2
π

+
ρi;t

t−M2
π

+
ρi;u

u−M2
π

ρi,s = δi1 Fπ0γ∗γ∗

(

q2
1 , q

2
2

)

Fπ0γ∗γ∗

(

q2
3 , q

2
4

)

,

ρi,t = δi2 Fπ0γ∗γ∗

(

q2
1 , q

2
3

)

Fπ0γ∗γ∗

(

q2
2 , q

2
4

)

,

ρi,u = δi3 Fπ0γ∗γ∗

(

q2
1 , q

2
4

)

Fπ0γ∗γ∗

(

q2
2 , q

2
3

)

,
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Pion-pole contribution

◮ To calculate the pion-pole contribution the crucial

ingredient is the pion transition form factor → talk by Sanchez Puertas

Nyffeler (2016)

◮ a dispersive representation thereof requires as input:
Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

◮ the pion vector form factor [dispersive repr. well known]

◮ the γ∗ → 3π amplitude [analyzed dispersively in this work]

◮ the ππ scattering amplitude [dispersive repr. well known]
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ingredient is the pion transition form factor → talk by Sanchez Puertas

Nyffeler (2016)

◮ a dispersive representation thereof requires as input:
Hoferichter, Kubis, Leupold, Niecknig, Schneider (2014)

◮ the pion vector form factor [dispersive repr. well known]

◮ the γ∗ → 3π amplitude [analyzed dispersively in this work]

◮ the ππ scattering amplitude [dispersive repr. well known]
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∗

v

γ
∗

s

γ∗

s

P

◮ First results of direct lattice calculations have also become

available Gerardin, Mayer, Nyffeler (2016)
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Pion box contribution

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·
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Pion box contribution

The only ingredient needed for the pion-box contribution is the

vector form factor

ΠFsQED
i = Fπ
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where B0, C0 and D0 are Passarino-Veltman functions
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Pion box contribution
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VMD
our fit

Uncertainties will be tiny

Preliminary numbers:

aFsQED
µ = −15.9 · 10−11 aFsQED,VMD

µ = −16.4 · 10−11
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Our dispersive representation of the Π̄µνλσ tensor

GC, Hoferichter, Procura, Stoffer (2014)

Πµνλσ = Ππ0-pole
µνλσ + ΠFsQED

µνλσ + Π̄µνλσ + · · ·
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Our dispersive representation of the Π̄µνλσ tensor

GC, Hoferichter, Procura, Stoffer (2014)

Π̄µνλσ =

15
∑

i=1

(

A
µνλσ
i,s Πi(s) + A

µνλσ
i,t Πi(t) + A

µνλσ
i,u Πi(u)

)

◮ the Πi(s) are single-variable functions having only a

right-hand cut

◮ for the discontinuity we keep only the lowest partial wave

◮ the dispersive integral that gives the Πi(s) in terms of its

discontinuity has the required soft-photon zeros

◮ soft-photon zeros constrain

the subtraction polynomial to vanish

(unless one wanted to subtract more, which is unnecessary)
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Dispersion relations for the Πi(s)

Requiring that the BTT functions be free of singularities

determines the kernels, including non-diagonal terms. S-waves:

Πs
1 =

s − q2
3

π

∞
∫

4m2
π

ds′

s′ − q2
3

[

K1 Imh̄0
++,++(s

′) +
2ξ1ξ2

λ′

12

Imh̄0
00,++(s

′)

]

yΠs
2 =

s − q2
3

π

∞
∫

4m2
π

ds′

s′ − q2
3

[

K1 Imh̄0
00,++(s

′) +
2q2

1q2
2

ξ1ξ2λ
′

12

Imh̄0
++,++(s

′)

]

K1 :=
1

s′ − s
− s′ − q2

1 − q2
2

λ′

12

Remark: Imh0
++,++(s) and Imh0

00,++(s) given by S-wave

helicity amplitudes of γ∗γ∗ → ππ

Once the projection on the BTT basis is done

⇒ use the master formula to calculate the contribution to aµ
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Dispersion relations for the Πi(s)

Requiring that the BTT functions be free of singularities

determines the kernels, including non-diagonal terms. S-waves:

Πs
1 =

s − q2
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∞
∫
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K1 Imh̄0
00,++(s

′) +
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++,++(s
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]

K1 :=
1

s′ − s
− s′ − q2

1 − q2
2
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12

Remark: Imh0
++,++(s) and Imh0

00,++(s) given by S-wave

helicity amplitudes of γ∗γ∗ → ππ

Nontrivial extension to D waves now completed [for G and higher waves too]

(diagonal kernels already given explicitly in JHEP (14))
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Some nontrivial difficulties encountered along the way

◮ BTT and d = 4 ambiguities in the choice of the (redundant)

set for the LbL tensor leads to different representations for

the contribution to aµ

◮ equivalence between these different representations

implies (sets of) sum rules: are these satisfied?

◮ projection on partial waves and truncation to the first few

leads to violations of these sum rules: numerical

consequences?

◮ non-physical photon polarizations (in the off-shell unitarity

relations before taking the q2
4 → 0, q4

µ → 0 limit) seem(ed)

to contribute to aµ
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FsQED result X
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Some nontrivial difficulties encountered along the way

◮ BTT and d = 4 ambiguities in the choice of the (redundant)

set for the LbL tensor leads to different representations for

the contribution to aµ X

◮ equivalence between these different representations

implies (sets of) sum rules: are these satisfied? X

◮ projection on partial waves and truncation to the first few

leads to violations of these sum rules: numerical

consequences? X

◮ non-physical photon polarizations (in the off-shell unitarity

relations before taking the q2
4 → 0, q4

µ → 0 limit) seem(ed)

to contribute to aµ X

◮ check that PW expansion reproduces the total sQED and

FsQED result X

◮ sheer size of the expressions; Form output for:

S waves: 40 KB D waves: 22 MB G waves: 24 MB
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Dispersion relations for γ∗γ∗ → ππ

Roy-Steiner eqs. = Dispersion relations + partial-wave expansion

+ crossing symmetry + unitarity + gauge invariance

◮ On-shell γγ → ππ: prominent D-wave

reson. f2(1270) Moussallam (10) Hoferichter, Phillips, Schat (11)

◮ γ∗γ → ππ Moussallam (13)

◮ γ∗γ∗ → ππ, new feature: anomalous

thresholds Hoferichter, GC, Procura, Stoffer (13)

◮ Constraints
◮ Low energy: pion polar., ChPT
◮ Primakoff: γπ → γπ at

COMPASS, JLAB
◮ Scattering: e+e− → e+e−ππ,

e+e− → ππγ
◮ Decays: ω, φ → ππγ

π
−

π
−

Z

e
+

e
−

π

π

e
+

e
−

π

π
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Physics of γ∗γ∗ → ππ

◮ ππ rescattering ⇔ resonances, e.g.

f2(1270)

◮ S-wave provides model-independent

implementation of the σ

◮ Analytic continuation with dispersion
theory: resonance properties

◮ Precise determination of σ-pole from
ππ scattering Caprini, GC, Leutwyler 2006

Mσ = 441+16
−8 MeV Γσ = 544+18

−25 MeV

◮ Coupling σ → γγ from γγ → ππ
Hoferichter, Phillips, Schat 2011

f0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHSf0(500) PARTIAL WIDTHS

Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2Γ
(

γγ
)

Γ2

VALUE (keV) DOCUMENT ID TECN COMMENT

• • • We do not use the following data for averages, fits, limits, etc. • • •

1.7 ±0.4 54 HOFERICHTER11 RVUE Compilation

3.08±0.82 55 MENNESSIER 11 RVUE Compilation

2.08±0.2 +0.07
−0.04

56 MOUSSALLAM11 RVUE Compilation

2.08 57 MAO 09 RVUE Compilation

1.2 ±0.4 58 BERNABEU 08 RVUE

3.9 ±0.6 55 MENNESSIER 08 RVUE γγ → π
+

π
−, π

0
π
0

σ, f0, a0

h0,++ h0,++

f0(500) or σ

was f0(600)
IG (JPC ) = 0+(0 + +)

A REVIEW GOES HERE – Check our WWW List of Reviews

f0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

sf0(500) T-MATRIX POLE
√

s

Note that Γ ≈ 2 Im(
√

spole).

VALUE (MeV) DOCUMENT ID TECN COMMENT

(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE(400–550)−i(200–350) OUR ESTIMATE

• • • We do not use the following data for averages, fits, limits, etc. • • •

(445 ± 25)−i(278+22
−18) 1,2 GARCIA-MAR...11 RVUE Compilation

(457+14
−13)−i(279+11

− 7) 1,3 GARCIA-MAR...11 RVUE Compilation

(442+5
−8)−i(274+6

−5) 4 MOUSSALLAM11 RVUE Compilation

(452 ± 13)−i(259 ± 16) 5 MENNESSIER 10 RVUE Compilation

(448 ± 43)−i(266 ± 43) 6 MENNESSIER 10 RVUE Compilation

(455 ± 6+31)−i(278 ± 6+34) 7 CAPRINI 08 RVUE Compilation
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Some preliminary numbers for π-rescattering

Based on:

◮ taking the pion pole as only left-hand singularity

◮ ⇒ pion vector FF to describe the off-shell behaviour

◮ ππ phases obtained with the inverse amplitude method

[reasonable low-energy representation + unique and well defined extrapolation to ∞]

◮ numerical solution of the γ∗γ∗ → ππ dispersion relation

S-wave contributions:

aHLbL
µ in 10−11 units

cutoff(GeV) 1 2 ∞
I = 0 −9.2 −9.4 −8.8
I = 2 2.0 1.0 0.9

total −7.3 −8.4 −7.9
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Outline
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- Pion box contribution

- Pion rescattering contribution

Outlook and Conclusions
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Outlook

Path to a numerical evaluation of HLbL contributions to aµ:

◮ take into account experimental constraints on the pion

transition form factor to evaluate the pion pole contribution

◮ using as input a dispersive description of the

pion em form factor ⇒ evaluate the FsQED contribution

◮ take into account experimental constraints on γ(∗)γ → ππ

◮ estimate the dependence on the q2 of the second photon

(theoretically, there are no data yet on γ∗γ∗ → ππ)

◮ ⇒ solve the dispersion relation for the helicity amplitudes

of γ∗γ∗ → ππ

◮ input the outcome into the master formula
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Hadronic light-by-light: a roadmap

GC, Hoferichter, Kubis, Procura, Stoffer arXiv:1408.2517 (PLB ’14)

γπ → ππγπ → ππ

e+e− → π0γe+e− → π0γ ω, φ → ππγ e+e− → ππγ

ππ → ππ

Pion transition form factor

Fπ0γ∗γ∗

(

q2
1
, q2

2

)

Partial waves for

γ∗γ∗
→ ππ

e+e− → e+e−ππ

Pion vector

form factor F π

V

Pion vector

form factor F π

V

e+e− → 3π pion polarizabilitiespion polarizabilities γπ → γπ

ω, φ → 3π ω, φ → π0γ∗ω, φ → π0γ∗

Artwork by M. Hoferichter

A reliable evaluation of the HLbL requires many different contributions

by and a collaboration among theorists and experimentalists
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Conclusions

◮ I have discussed a dispersive approach to the calculation

of the HLbL tensor

◮ a crucial first step is the derivation of the BTT basis for the

HLbL tensor, which I have presented here

◮ we have derived a master formula which expresses the

contributions to aµ in terms of BTT functions

◮ I have presented preliminary results for the pion-box and

the S-wave pion-rescattering contributions

◮ final goal is a model-independent, data-driven calculation

of the HLbL contribution to aµ



Results for e+e− → 3π and e+e− → π0γ
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Results for e+e− → 3π and e+e− → π0γ

Results for the doubly-virtual pion transition form factor not yet

available – data from e.g. KLOE on φ → π0e+e−, or the old,

puzzling ones on ω → π0e+e− represent useful input

η transition form factor: Hanhart, Kupsc, Meißner, Stollenwerk, Wirzba (2013)



Inverse-amplitude method’s input
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