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Outline

• Hadron Contributions


• Strangeness FFs


• 2 New Physics Searches


• Proton weak charge


• Radiative corrections


• Current status of the Q-weak 
experiment
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!-Z box diagram above Q2 ¼ 0:025 ðGeV=cÞ2 was
included using the prescription provided in Ref. [27] with
EM form factors from Ref. [23]. The small energy and Q2

dependent uncertainties associated with the predicted cor-
rections were folded into the systematic error of each point.
The effect of either doubling, or not including the nomi-
nally forward angle !-Z radiative correction for the six
larger angle data >21$ used in the fit resulted in a change
in Qp

WðPVESÞ<%0:0006.
The effects of varying the maximum Q2 or " of the data

included in the fit were studied and found to be small for
data aboveQ2 & 0:25 ðGeV=cÞ2. Truncating the data set at
lower Q2 values tends to destabilize the fit, and enhances
the sensitivity to the underlying statistical fluctuations in
the data set, as reported in [22]. The effect of varying the
dipole mass in the strange and axial form factors was also
studied and found to be small, with a variation of
<% 0:001 in Qp

W for 0:7ðGeV=cÞ2 < #2 < 2ðGeV=cÞ2.
Smaller values of # are disfavored by lattice QCD calcu-
lations of strange form factors [53], and the results quickly
plateau for larger values.

In order to illustrate the two-dimensional global fit
("; Q2) in a single dimension (Q2), the angle dependence
of the strange and axial form-factor contributions was
removed by subtracting ½Acalcð"; Q2Þ ( Acalcð0$; Q2Þ)
from the measured asymmetries Aepð"; Q2Þ, where the

calculated asymmetries Acalc are determined from
Eq. (2) using the results of the fit. The reduced asymme-
tries from this forward angle rotation of all the ~ep PVES
data used in the global fit are shown in Fig. 2 along with the
result of the fit. The intercept of the fit at Q2 ¼ 0 is
Qp

WðPVESÞ ¼ 0:064% 0:012.

The present measurement also constrains the neutral-
weak quark couplings. The result of a fit combining the
most recent correction [54] to the 133Cs APV result [8],
with the world PVES data (including the present measure-
ment), is shown in Fig. 3.
The neutral-weak couplings determined from this com-

bined fit are C1u¼(0:1835%0:0054 and C1d¼0:3355%
0:0050, with a correlation coefficient (0:980. The cou-
plings can be used in turn to obtain a value for Qp

W ,
Qp

WðPVESþ APVÞ ¼ (2ð2C1u þ C1dÞ ¼ 0:063% 0:012,
which is virtually identical with the result obtained from
the PVES results alone. In addition, the C1’s can be com-
bined to extract the neutron’s weak charge Qn

WðPVESþ
APVÞ¼(2ðC1uþ2C1dÞ¼(0:975%0:010. Both Qp

W and
Qn

W are in agreement with the SM values [34] Qp
WðSMÞ¼

0:0710%0:0007 and Qn
WðSMÞ ¼ (0:9890% 0:0007.

Prescriptions for determining the mass reach implied
by this result can be found in the literature [2,6]. The
commissioning data reported here comprise 4% of the
total data acquired during the experiment. The final
result when published will benefit from an asymmetry
anticipated to have an uncertainty about 5 times
smaller.

FIG. 2 (color). Global fit result (solid line) presented in the
forward angle limit as reduced asymmetries derived from
this measurement as well as other PVES experiments up to
Q2 ¼ 0:63 ðGeV=cÞ2, including proton, helium, and deute-
rium data. The additional uncertainty arising from this rota-
tion is indicated by outer error bars on each point. The
yellow shaded region indicates the uncertainty in the fit. Qp

W

is the intercept of the fit. The SM prediction [34] is also
shown (arrow).

FIG. 3 (color). The constraints on the neutral-weak quark
coupling constants C1u ( C1d (isovector) and C1u þ C1d (iso-
scalar). The more horizontal (green) APV band (shown at
!$2 ¼ 2:3) provides a tight constraint on the isoscalar combi-
nation from 133Cs data. The more vertical (blue) ellipse
represents the global fit of the existing Q2 < 0:63 PVES
data including the new result reported here at Q2¼
0:025 ðGeV=cÞ2. The smaller (red) ellipse near the center of
the figure shows the result obtained by combining the APV
and PVES information. The SM prediction [34] as a function
of sin2"W in the MS scheme is plotted (diagonal black line)
with the SM best fit value indicated by the (black) point at
sin2"W ¼ 0:231 16.
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Hadron contributions: 
Strange-quark form factors



Electromagnetic currents of the nucleon

• Electromagnetic form factors characterise the charge a magnetisation 
distribution in the nucleon


• Measure total response from all quarks


• Charge symmetry: proton and neutron the “same”: u↔d

Strangeness is 
just in glue!
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Weak neutral form factor

• Electroweak couplings differ from usual charges


• Weak mixing angle:
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Weak neutral form factor

• Electroweak couplings differ from usual charges


• Weak mixing angle:
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Can isolate strangeness!



Weak neutral charge

• Q-weak
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E (Q2! 0) = 1�4sin2θW
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Parity-violating electron scattering

• Asymmetry between right- and left-hand polarised electrons


• Measure of interference between 𝛄 and Z0 exchange

APV =
σR�σL
σR+σL
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M2
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γ Z0

γ
2



Proton target

APV =
σR�σL
σR+σL

=
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Strangeness

For extraction of strangeness, assume Standard Model!

4GpZ
E,M = (1�4sin2θW)Gpγ

E,M�G
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E,M�Gs

E,M

Assume charge symmetry:



Strangeness measurements

PVA4 @ MAMI

JLab G0

HAPPEXSAMPLE @ MIT-Bates



G0 Experiment Broad Q2 coverage
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Global analysis

• Explore sensitivity to Q2 cut


• Fit “Effective axial charge” (includes anapole)


• Assume dipole form


• Parameterise strangeness


• Taylor expansion:


• Dipole:

RDY et al. PRL(2006)
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GMs-GEs Leading-order Taylor
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HAPPEX (2006) New measurement after global 
analysis
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Excellent agreement 
with global analysis!



Combined global analysis For latest global analysis,

see e.g.

González-Jiménez et al. PRD(2014)
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Lattice QCD advances Fantastic increase in precision in 
direct calculation!
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FIG. 3. Strange-quark and disconnected light-quark electric and magnetic form factors, with statistical error bars. The curves
result from the z-expansion fits; the inner bands show the statistical uncertainty and the outer error bands show the combined
statistical and systematic uncertainties (added in quadrature). The charge factors are not included.

FIG. 4. Linear combination of form factors, Gs
E + ⌘Gs

M ,
probed by forward-angle parity-violating elastic ep scatter-
ing experiments [5–7, 9–11, 13, 14]. The coe�cient ⌘ depends
on the scattering angle and Q2; for the lattice data we use the
approximation ⌘ = AQ2, A = 0.94 GeV�2 [10]. In the low
Q2 region we also show the linear dependence on Q2 resulting
from the estimated charge radius and magnetic moment at
the physical point.

we observe, suggesting that the quark masses are too
large for ChPT at this order. Therefore, we resort to a
simple linear interpolation in m2

loop

. We also adjust to
the physical nuclear magneton, and obtain at the physi-
cal point:

(r2E)s = �0.0067(10)(17)(15) fm2,

(r2M )s = �0.018(6)(5)(5) fm2,

µs = �0.022(4)(4)(6) µN ,

(7)

FIG. 5. Determinations of the strange magnetic moment:
from direct lattice QCD calculations (this work and Ref. [17];
red circles), models and phenomenology [16, 29–31] (green
squares), and from a recent global analysis of parity-violating
elastic scattering data [32] (blue diamond).

where the first two uncertainties are statistical and sys-
tematic (as estimated above). The third error is the dif-
ference between the value at the physical point and on
our lattice ensemble (using the physical nuclear magne-
ton), and serves as an estimate of the uncertainty due to
extrapolation to the physical point.

The experiments run at forward scattering angles were
sensitive to a particular linear combination of form fac-
tors, Gs

E + ⌘Gs
M , which we show in Fig. 4. Our results

and the experimental data are both broadly consistent
with zero, although the lattice data have much smaller
uncertainties. This suggests that it will be quite chal-
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FIG. 5. Determinations of the strange magnetic moment:
from direct lattice QCD calculations (this work and Ref. [17];
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elastic scattering data [34] (blue diamond).

where the first two uncertainties are statistical and sys-
tematic (as estimated above). The third error is the dif-
ference between the value at the physical point and on
our lattice ensemble (using the physical nuclear magne-
ton), and serves as an estimate of the uncertainty due to
extrapolation to the physical point.

The experiments run at forward scattering angles were
sensitive to a particular linear combination of form fac-
tors, Gs

E + ⌘Gs
M , which we show in Fig. 4. Our results

and the experimental data are both broadly consistent
with zero, although the lattice data have much smaller
uncertainties. This suggests that it will be quite chal-

Green, Meinel et al. PRD(2015)



2 New Physics Searches: 
Weak charge of the proton



2 New Physics Searches: 
Weak charge of the proton



PV electron-quark couplings

C1(2)q

=

C1(2)q

+
SM

new physics

Constrained by low-
energy data!

LPV
SM =�GFp

2
ēγµγ5e∑

q
CSM1q q̄γµq



C1q quark-vector  
(electron axial) couplings  

c. 2006

High precision atomic parity 
violation measurement

95% CL
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Proton PV asymmetry
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Assume charge symmetry:

Proton weak charge Strangeness

Qp
weak =�2(2C1u+C1d)



Proton PV asymmetry

APV =
σR�σL
σR+σL

=

�GFQ2

πα
p
2

�
εGpγ

E G
pZ
E + τGpγ

MG
pZ
M � 1

2(1�4sin
2θW)ε0Gpγ

MG̃
p
A

ε(Gpγ
E )2+ τ(Gpγ

M )2

Neutral-weak form factors

4GpZ
E,M = (1�4sin2θW)Gpγ

E,M�G
nγ
E,M�Gs

E,M

Assume charge symmetry:

Proton weak charge Strangeness

Use data to constrain the parameters of the 
electroweak theory

Qp
weak =�2(2C1u+C1d)



Proton extrapolation Weak charge:
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Update on C1q couplings
“Strangeness” measurements 
constraint electroweak 
interaction
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Update on C1q couplings
“Strangeness” measurements 
constraint electroweak 
interaction

!0.8 !0.7 !0.6 !0.5 !0.4
C1"u!C1"d

0.1

0.12

0.14

0.16

0.18

C 1
"u

#
C 1

"d

SLAC: D DIS Mainz: Be

Bates: C

APV Tl

APV Cs

!0.8 !0.7 !0.6 !0.5 !0.4
C1"u!C1"d

0.1

0.12

0.14

0.16

0.18

C 1
"u

#
C 1

"d

!0.8 !0.7 !0.6 !0.5 !0.4
C1"u!C1"d

0.1

0.12

0.14

0.16

0.18

C 1
"u

#
C 1

"d

SLAC: D DIS Mainz: Be

Bates: C

APV Tl

APV Cs

PVES

!0.8 !0.7 !0.6 !0.5 !0.4
C1"u!C1"d

0.1

0.12

0.14

0.16

0.18

C 1
"u

#
C 1

"d



Update on C1q couplings
“Strangeness” measurements 
constraint electroweak 
interaction
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Bounds on NP contact interaction
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ēγµγ5e∑

q
CSM1q q̄γµq

Erler et al., PRD68(2003)
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Bounds on NP contact interaction
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Full isospin coverage for limits on new physics!

huV = cosθh hdV = sinθh

Data sets limits on
g2

Λ2



“Isospin” dependence of NP bounds
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“Isospin” dependence of NP bounds
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Q-weak Experiment
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Q-weak: precision measurement @ low Q2
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APV = �1.58± 0.12± 0.04 ppm
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Turn on Q-weak and wait!



Turn on Q-weak and wait!
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• Significant energy-dependent correction from inelastic hadronic states 
identified by Gorchtein & Horowitz PRL(2009)


• Forward scattering limit evaluated through dispersion relation

Radiative corrections: �Z box

fit the real Compton data (for the parameters, see [11]).
Reference [6] gives full W2 and Q2 dependence of the
longitudinal and transverse virtual photon cross sections

!Regge
L;T ðW2; Q2Þ, and we refer the reader to that reference

for further details. For the resonances, to depart from the
real photon point, transition form factors are used. The
latter are to some extent known for a number of reso-
nances, and we assume a dipole form FTðQ2Þ ¼

1
ð1þQ2=!2Þ2 and FLðQ2Þ ¼ Q=!

ð1þQ2=!2Þ2:5 , with ! % 1 GeV.

It is important to note that the model described above is
necessary only because the experimental data on total cross
sections for absorption of real and virtual photons only
exist in limited intervals of the variables W2 and Q2, and
the described model interpolates the data points to inter-
mediate values. The model is predominantly designed to
describe low energies (resonance part) and very high en-
ergies, where the parameters of the two components are
known from a direct comparison to data. However, the
presence of the Regge " exchange (q "q exchange in the t
channel may mimic the parton model’s handbag diagram)
along with the pure CDP Pomeron (two gluon exchange)
allows one to access the intermediate range of x, as well.
We will address the extent to which the model of Eq. (8)
works in this intermediate range of x and relate the uncer-
tainty induced by using electromagnetic DIS data in place
of PVDIS data in upcoming work.

We present results of the dispersion calculation in Fig. 3.
It can be seen that, starting from Elab % 1 GeV, the high
energy (Regge) contribution dominates the contribution
from the resonances. This is the consequence of a relatively
slow convergence of the dispersion integral for the Regge
part, while the resonances drop very fast. In the presented
calculation, the upper limit of the integration over #0 was
chosen to be 500 GeV, although the 1=#02 weighting en-
sures the convergence already at lower values. While at
very low energies the correction is indeed very small, at the

1.16 GeVenergy of the QWEAK experiment the correction
is 5.7%. More specifically, QWEAK aims at comparing the
measured weak charge of the proton ð4$%

ffiffiffi
2

p
=GFtÞAPV to

its value as given in the SM, Qp
W½1þ &RC þ Re&'Z', and

from this comparison draw conclusions about the new
physics contributions. The current estimate of the uncer-
tainty due to the corrections in the square brackets is 2.2%,
and this estimate relies on the assumption that &'Z is highly
suppressed ((0:65%). As explained above, this estimate is
taken over from low energy estimates for parity violation in
atoms and is not based on any microscopic calculation.
Although the numbers presented here are themselves
model-dependent, our calculation shows that the 'Z-box
diagrams can be almost an order of magnitude larger than it
was believed to date, and this result suggests larger pos-
sible theoretical errors for the QWEAK experiment. If the
uncertainty in the dispersion correction is to be comparable
to the proposed 2% experimental error in APV, one may
need to calculate the dispersion 'Z correction (that we
think is near 6%) to a fractional accuracy of order 30%.
Alternatively, uncertainties in these dispersion corrections
could provide a limit on the precision of a standard model
test. Since the calculation uses the PVDIS structure func-
tions as input, it would be extremely helpful to have ex-
perimental data on PVDIS to check the model adopted
here.
This work was supported in part by the U.S. NSF Grant

No. PHY 0555232 (M.G.) and by DOE Grant No. DE-
FG02-87ER40365 (C. J. H.).
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Q-weak experimentalist reaction!



Q-weak experimentalist reaction!



Theorists: back to work



gamma-Z box

• Forward dispersion relation:


• Imaginary part given by:

Vector h correction

forward dispersion relation

integration over E < 0 corresponds to crossed-box, 
vector h contribution symmetric under E       -E

’
’ ’

vector h correction         vanishes at E = 0, but experiment
has E ~ 1 GeV - what is energy dependence?                 
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Boundary matching: 𝛾𝛾 structure functions



         from         ?

• Region III (Scaling):


• Region I (Resonances):


• Bosted-Christy empirical parameterisation


• Resonances: Use PDG p and n helicity amplitudes to determine 
electroweak couplings

F �Z F ��

Scaling region III

Basic issue: how to relate         to         ?  F �Z
1,2 F �

1,2

F

�
2 =

X

q

e

2
qx(q + q̄)

F

�Z
2 =

X

q

2eqg
q
V x(q + q̄)

Resonance region I  largest contribution, unlike

�T,L = �T,L(res) + �T,L(bg)

Christy-Bosted (CB) fit to ep

�T,L(res) 7 resonances from 1232 to 1934 MeV. 
Modify fit by ratio of e.m. to weak 
transition amplitudes.

F �Z
3

10

�T,L = �T,L(res) + �T,L(bg)



Background rotation

• VMD model of background contribution


• Use weak isospin rotation on VMD model

Background

Gorchtein et al. background fits

20

• Background estimated from VMD models 

p p
=

p p

Z Z

V V

• Got γZ from γγ by changing one coupling,

V
Z� coupling

�� coupling

= (2� 4 sin2 �
W

) = 1 + Q

p

W

Z� coupling

�� coupling

= �1 + Q

p

W

Z� coupling

�� coupling

= 2 + Q

p

W

�T,L(bg)

V = ρ, ω, φ + continuum

• GHRM use Vector Meson Dominance (VMD) models fit 
to high energy data, plus isospin rotations

• Assign 100% uncertainty on continuum contribution 
(dominates errors)

• AJM model: constrain continuum (higher Q²) contribution 
by matching with PDF ratios (γZ to γγ) across 
boundaries of Regions I, II and III.

11

for background at low     , weak isospin rotation uses VMD

structure functionsF �Z
1,2

Q2

RV =
��⇤p!V p

��⇤p!⇥p

GHRM assume largest source of error!

AJM       model�Z

⇥�Z

⇥��
=

�⇥ + �⌅ R⌅ + �⇤ R⇤ + �C RC

1 +R⌅ +R⇤ +RC

continuum parameter       not constrained in VMDC

��Z
V = V ���

V

� = 3� 4 sin2 ✓W⇥� = 2� 4 sin2 �W , ⇥� = �4 sin2 �W ,

production cross section ratio
for vector meson V  to     meson⇢

C = 1± 1
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continuum parameter



Matching at boundary

• Unknown continuum “rotation” parameter constrained by matching to 
boundary with scaling region

Region where continuum contributions are relevant
overlaps with typical reach of global PDF fits

AJM       model�Z

constrain      using PDF parametrizations by requiring
matching of         to DIS structure functions

C

F �Z
1,2

⇤⇤

⇤⇤

⇤⇤
⇤⇤

⇤⇤
⇤⇤

⇤⇤ ⇤⇤ ⇤⇤ ⇤⇤

��

�� ��

��

��

��

��

��

��

��

⇥⇥
⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥ ⇥⇥
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0.7
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0.9

W 2 �GeV2⇥

�C
T

6 GeV2
⇤ 2.5 GeV2 ⇤�CT⌅⇥ 10 GeV2

(small contribution to asymmetry)

�T
C = 0.65± 0.14, �L

C = �1.3± 1.7
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Hall et al. (2013)
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Consistent matching at boundaries



Final result AJM: Adelaide-JLab-Manitoba

Hall et al., PRD(2013)



Comparison

• 3 groups doing independent analyses

• At Qweak energy E = 1.165 GeV:

• Mainly different treatments of low Q², low W region 
background contributions

• Agree on overall magnitude, but disagree on errors

GH (2009)

SBMT (2010) (4.7+1.1
�0.4)� 10�3

GHRM (2011) (5.4± 2.0)� 10�3

RC (2011) (5.7± 0.9)� 10�3

AJM (2013) (5.6± 0.4)� 10�3

6

Gorchtein et al.

Rislow & Carlson



Comparison

• 3 groups doing independent analyses

• At Qweak energy E = 1.165 GeV:

• Mainly different treatments of low Q², low W region 
background contributions

• Agree on overall magnitude, but disagree on errors

GH (2009)

SBMT (2010) (4.7+1.1
�0.4)� 10�3

GHRM (2011) (5.4± 2.0)� 10�3

RC (2011) (5.7± 0.9)� 10�3

AJM (2013) (5.6± 0.4)� 10�3

6

Gorchtein et al.

Rislow & Carlson

Good agreement 
on central value



Comparison

• 3 groups doing independent analyses

• At Qweak energy E = 1.165 GeV:

• Mainly different treatments of low Q², low W region 
background contributions

• Agree on overall magnitude, but disagree on errors

GH (2009)

SBMT (2010) (4.7+1.1
�0.4)� 10�3

GHRM (2011) (5.4± 2.0)� 10�3

RC (2011) (5.7± 0.9)� 10�3

AJM (2013) (5.6± 0.4)� 10�3

6

Gorchtein et al.

Rislow & Carlson

Good agreement 
on central value

A little debate over 
uncertainty



Q-weak Experiment: 
First 4% of data collection



Proton asymmetry measurements

• Forward scattering projection
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“4%” Q-weak result



Weak charge 
extrapolation

!-Z box diagram above Q2 ¼ 0:025 ðGeV=cÞ2 was
included using the prescription provided in Ref. [27] with
EM form factors from Ref. [23]. The small energy and Q2

dependent uncertainties associated with the predicted cor-
rections were folded into the systematic error of each point.
The effect of either doubling, or not including the nomi-
nally forward angle !-Z radiative correction for the six
larger angle data >21$ used in the fit resulted in a change
in Qp

WðPVESÞ<%0:0006.
The effects of varying the maximum Q2 or " of the data

included in the fit were studied and found to be small for
data aboveQ2 & 0:25 ðGeV=cÞ2. Truncating the data set at
lower Q2 values tends to destabilize the fit, and enhances
the sensitivity to the underlying statistical fluctuations in
the data set, as reported in [22]. The effect of varying the
dipole mass in the strange and axial form factors was also
studied and found to be small, with a variation of
<% 0:001 in Qp

W for 0:7ðGeV=cÞ2 < #2 < 2ðGeV=cÞ2.
Smaller values of # are disfavored by lattice QCD calcu-
lations of strange form factors [53], and the results quickly
plateau for larger values.

In order to illustrate the two-dimensional global fit
("; Q2) in a single dimension (Q2), the angle dependence
of the strange and axial form-factor contributions was
removed by subtracting ½Acalcð"; Q2Þ ( Acalcð0$; Q2Þ)
from the measured asymmetries Aepð"; Q2Þ, where the

calculated asymmetries Acalc are determined from
Eq. (2) using the results of the fit. The reduced asymme-
tries from this forward angle rotation of all the ~ep PVES
data used in the global fit are shown in Fig. 2 along with the
result of the fit. The intercept of the fit at Q2 ¼ 0 is
Qp

WðPVESÞ ¼ 0:064% 0:012.

The present measurement also constrains the neutral-
weak quark couplings. The result of a fit combining the
most recent correction [54] to the 133Cs APV result [8],
with the world PVES data (including the present measure-
ment), is shown in Fig. 3.
The neutral-weak couplings determined from this com-

bined fit are C1u¼(0:1835%0:0054 and C1d¼0:3355%
0:0050, with a correlation coefficient (0:980. The cou-
plings can be used in turn to obtain a value for Qp

W ,
Qp

WðPVESþ APVÞ ¼ (2ð2C1u þ C1dÞ ¼ 0:063% 0:012,
which is virtually identical with the result obtained from
the PVES results alone. In addition, the C1’s can be com-
bined to extract the neutron’s weak charge Qn

WðPVESþ
APVÞ¼(2ðC1uþ2C1dÞ¼(0:975%0:010. Both Qp

W and
Qn

W are in agreement with the SM values [34] Qp
WðSMÞ¼

0:0710%0:0007 and Qn
WðSMÞ ¼ (0:9890% 0:0007.

Prescriptions for determining the mass reach implied
by this result can be found in the literature [2,6]. The
commissioning data reported here comprise 4% of the
total data acquired during the experiment. The final
result when published will benefit from an asymmetry
anticipated to have an uncertainty about 5 times
smaller.

FIG. 2 (color). Global fit result (solid line) presented in the
forward angle limit as reduced asymmetries derived from
this measurement as well as other PVES experiments up to
Q2 ¼ 0:63 ðGeV=cÞ2, including proton, helium, and deute-
rium data. The additional uncertainty arising from this rota-
tion is indicated by outer error bars on each point. The
yellow shaded region indicates the uncertainty in the fit. Qp

W

is the intercept of the fit. The SM prediction [34] is also
shown (arrow).

FIG. 3 (color). The constraints on the neutral-weak quark
coupling constants C1u ( C1d (isovector) and C1u þ C1d (iso-
scalar). The more horizontal (green) APV band (shown at
!$2 ¼ 2:3) provides a tight constraint on the isoscalar combi-
nation from 133Cs data. The more vertical (blue) ellipse
represents the global fit of the existing Q2 < 0:63 PVES
data including the new result reported here at Q2¼
0:025 ðGeV=cÞ2. The smaller (red) ellipse near the center of
the figure shows the result obtained by combining the APV
and PVES information. The SM prediction [34] as a function
of sin2"W in the MS scheme is plotted (diagonal black line)
with the SM best fit value indicated by the (black) point at
sin2"W ¼ 0:231 16.

PRL 111, 141803 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

4 OCTOBER 2013

141803-5

Q-weak, PRL(2013)



Weak charges Excellent agreement with SM
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Conclusions

• New knowledge of the flavour separation of nucleon form factors from 
precision electroweak measurements


• Tremendous advance in lattice QCD computations


• Can achieve high-precision search for new physics in the environment of 
the proton!!


• Requires significant control of theoretical constraints


• gamma-Z box was a surprise: important it was caught early


• AJM model, constrained estimate of box contribution: ~0.5% on Q-weak


• We await full statistics of Q-weak to probe new physics into the multi-TeV 
region


