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Lippmann-Schwinger equation

Lippmann-Schwinger equation (LS)

Potential two-body scattering. Given a potential V

Scattering T -matrix T (z) , Im(z) 6= 0

T (z) =V − V R0(z)T (z)

R0(z) = [H0 − z]
−1

H0 =− 1

2µ
∇2

H =H0 + V

• LS in partial waves

Tℓ(p
′, p, z) =Vℓ(p

′, p) +
µ

π2

∫

∞

0

dqq2
Vℓ(p

′, q)Tℓ(q, p, z)

q2 − 2µz
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Lippmann-Schwinger equation

Criterion for Singular Potentials

V (r) −−−→
r→0

αr−γ

ᾱ =α+ ℓ(ℓ+ 1)

Potential Ordinary Singular
γ < 2 > 2

γ = 2 ᾱ > 0 ᾱ ≤ 0

Ordinary/Regular Potentials:

Standard quantum mechanical treatment
Boundary condition: u(0) = 0
No extra free parameters
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Lippmann-Schwinger equation

The One-Pion-Exchange (OPE) potential for the singlet NN interaction
(r > 0):

Yukawa potential V (r) =− τ1 · τ2
(

gAmπ

2fπ

)2
e−mπr

4πr

Exchange of a pion between two nucleons

π
r1 = r1

′
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Lippmann-Schwinger equation

In many instances one has singular potentials

• Molecular physics: Van der Waals Force

V (r) = −3αAαBIAIB/2(IA + IB)

r6
+

∑

n=4

λn

r2n

Nuclear physics

Triplet component of one-Pion Exchange (OPE)

T (r) =
e−mπr

r

[

1 +
3

mπr
+

3

(mπr)2

]

−−−→
r→0

r−3

Higher orders in CHPT add extra powers of 1/rn

Particle physics:

Scattering of heavy-quarkonium states, color dipoles, QCD analog to
Van der Waals forces
pNRQCD, pNRQED
NR Quark Models, etc
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Lippmann-Schwinger equation

• Full range r ∈]0,∞[: Case, PR60,797(1950)

−u
′′(r) +

(

2µV (r) +
ℓ(ℓ+ 1)

r2
− k

2

)

u(r) =0

r

E

• Singular Attractive Potential

Two linearly independent wave
functions
One has to fix a relative phase,
ϕ(p) How to do it?.

Which are the appropriate boundary
conditions?
Historical Mess

Theoretical control within LS only
for ϕ(p) = const.
Case, PR60,797(’50); Arriola, Pavón,
PRC72,054002(’05)

The attractive singular potential does not determine uniquely the
scattering problem Plesset, PR41,278(1932), Case, PR60,797(1950)
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Lippmann-Schwinger equation

r

E

• Singular Repulsive Potential

There is only one finite (vanishing)
reduced wave function at r = 0

The solution is fixed

Pavón Valderrama, Ruiz Arriola,

Ann.Phys.323,1037(2008)
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New exact equation in NR scattering theory

New exact equation in NR scattering theory

Yukawa potential,

V (q) =
2g

q2 +m2
π

Singularity for q2 = −m2
π

1S0 potential: (2S+1LJ ) g = (gAmπ/
√
8fπ)

2

V (p) =
g

2p2
log(4p2/m2

π + 1)

∆1π(p
2) =

V (p2 + i0+)− V (p2 − i0+)

2i
= ImV (p2 + i0+) =

gπ

2p2

Left-hand cut (LHC) discontinuity for On-shell scattering

p2 <−m2
π/4 = L

Born approximation
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New exact equation in NR scattering theory

Full LHC Discontinuity , p2 = −k2 < L

2i∆(p2) =T (p2 + i0+)− T (p2 − i0+)

∆(p2) =ImT (p2 + i0+)

.

.

.

.

The LS generates contributions with
any number of pions to ∆(p2),
p2 < L

∆nπ(p
2) for p2 < −n2m2

π/4
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New exact equation in NR scattering theory

Notation: A = p2; How to calculate ∆(A)?:

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know

the exact form of ∆(p2) for a given potential . . . ”

p =ik ± ε , ε = 0+ , p2 = −k2 < L

T (ik ± ε, ik ± ε) =V (ik ± ε, ik ± ε)

+
µ

2π2

∫

∞

0

dqq2
V (ik ± ε, q)T (q, ik ± ε)

q2 + k2

The last integral, so calculated, IS PURELY REAL!!

You can try to calculate numerically just the once iterated OPE

µ

2π2

∫

∞

0

dqq2
V (ik ± ε, q)V (q, ik ± ε)

q2 + k2
∈ R
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New exact equation in NR scattering theory

• GENERAL method:
Analytic extrapolation of the LS from its integral expression

∆(A) =
1

2
f(−k) , A = −k

2

f(ν) =∆v(ν, k) +
θ(k − 2mπ − ν)m

2π2

∫

k−mπ

mπ+ν

dν1ν
2
1

k2
− ν2

1

∆v(ν, ν1)f(ν1)

IE : − k +mπ < ν < k −mπ

The limits in the IE ARE FINITE

The denominator never vanishes , |ν1| ≤ k −mπ in the IE

NO FREE PARAMETERS

Reason: Contact interactions (monomials) do not contribute to the
discontinuity of T (A)
Short-distance physics is not resolved→ Contact interactions
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New exact equation in NR scattering theory

∆(A) =
f(−k)

2
, k =

√

−A

f(ν) =∆v(ν, k) +
θ(k − 2mπ − ν)m

2π2

∫

k−mπ

mπ+ν

dν1ν
2
1

k2
− ν2

1

∆v(ν, ν1)f(ν1)

IE : − k +mπ < ν < k −mπ

It can be applied to:

Any local potential (spectral decomposition:)

V (p′,p) =
1

π

∫

∞

µ2
0

dµ2 η(µ2)

q2 + µ2
, q = p′ − p

Higher partial waves, ℓ ≥ 0

Coupled Channels

Nonlocal potentials due to relativistic corrections → η(µ2)
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LS equation in the complex plane

LS equation in the complex plane

Analytical properties of the potential
• Local potential, spectral decomposition:

V (q2) =
1

π

∫

∞

µ2
0

dµ2 η(µ2)

q2 + µ2
, q = p2 − p1

• S-wave projection:

v(p1, p2) =
1

2π

∫ +1

−1

dt

∫

∞

µ2
0

dµ2 η(µ2)

p21 + p22 − 2p1p2t+ µ2

=
1

4πp1p2

∫

∞

µ2
0

dµ2η(µ2)

×
{

log
[

µ2 + (p1 + p2)
2
]

− log
[

µ2 + (p1 − p2)
2
]}
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LS equation in the complex plane

Vertical cuts:

p2 = ±(p1 ± i
√

m2
π + x2) x ∈ R

Analogously for p1

-2

-1

0

1

2
-2

-1

0

1

2

-1.0

-0.5

0.0

0.5

1.0

p1 = mπ. Branch points at ±(p1 ± imπ)
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LS equation in the complex plane

Deforming the integration contour in the LS equation

k, k′ ∈ R in the half-off-shell T -matrix t(k, k′; k′
2
/m),

t(k, k′;
k′

2

m
) =v(k, k′) +

m

2π2

∫

∞

0

dp1p
2
1

p21 − k′2
v(k, p1)t(p1, k

′;
k′

2

m
) ,

v(k, p1) implies the vertical cuts

p1 = ±(k ± i
√

m2
π + x2) x ∈ R

k + i m π

p
1
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LS equation in the complex plane

We add an increasing positive imaginary part to k

k =kr + i ki , ki > 0

p1 =± (kr + i ki ± i
√

m2
π + x2) x ∈ R

k + i m π

p
1
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LS equation in the complex plane

We add an increasing positive imaginary part to k

k = kr + i ki , ki > mπ

k + i m π

p
1

kr > 0 , ki > mπ

kr < 0 , ki < −mπ
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LS equation in the complex plane

k − i m π

p
1

kr > 0 , ki < −mπ

kr < 0 , ki > mπ

• t(p1, k
′; k′

2
/m) follows the same pattern in terms of k′.

|Im k|−mπ

C|Re k’| |Re k|

|Im k’|−mπ
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LS equation in the complex plane

Calculation of ∆(−k2): Discontinuity across the LHC

On-shell scattering t(k, k; k2/m)
LHC:

p = −p± i
√

m2
π + x2 −→ p = ± i

2

√

m2
π + x2

p2 = −1

4
(m2

π + x2) −→ p2 ∈]−∞, L] , L = −m2
π/4

2i∆(−k2) = t(ik + iε, ik + iε)− t(ik − iε, ik + iε)

= (−1)ℓ
{

t(−ik + ε−, ik + ε)− t(−ik + ε+, ik + ε)

}

ε− < ε < ε+



S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

LS equation in the complex plane

t(−ik + ε−, ik + ε) t(−ik + ε+, ik + ε)

ε−

ε

i(k −mπ)

−i(k −mπ)

C
ε+

ε

i(k −mπ)

−i(k −mπ)

C
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LS equation in the complex plane

Im t(−ik + ε−, ik + ε)− Im t(−ik + ε+, ik + ε)

= Im v(iν + ε−, ik + ε)− Im v(iν + ε+, ik + ε)

+θ(k − ν − 2mπ)
m

2π2

∫ k−mπ

−k+mπ

dν1ν
2
1

k2 − ν21

×
[

Im v(iν + ε−, iν1 + ε)− Im v(iν + ε+, iν1 + ε)
]

×
[

Im t(iν1 + ε− δ, ik + ε)− Im t(iν1 + ε+ δ, ik + ε)
]

.

• One needs to know

Im t(iν + ε−, ik + ε)− Im t(iν + ε+, ik + ε)

−k +mπ < ν < k −mπ
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LS equation in the complex plane

Proceeding in the same way
Integral Equation −k +mπ < ν < k −mπ:

f(ν) ≡Im t(iν + ε−, ik + ε)− Im t(iν + ε+, ik + ε)

=Im v(iν + ε−, ik + ε)− Im v(iν + ε+, ik + ε)

+θ(k − ν − 2mπ)
m

2π2

∫ k−mπ

ν+mπ

dν1ν
2
1

k2 − ν21

×
[

Im v(iν + ε−, iν1 + ε)− Im v(iν + ε+, iν1 + ε)
]

×
[

Im t(iν1 + ε− δ, ik + ε)− Im t(iν1 + ε+ δ, ik + ε)
]

.

∆(A) =(−1)ℓ
f(−k)

2
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LS equation in the complex plane

log-log plot for 1S0 (Yukawa Pot.) ∆(A); gA = 6.80
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|∆
(A

)|
 (

|L
|-1

)

|A| (|L|)

|L| = m2
π/4; ∆1π, ∆2π, ∆3π, ∆4π,

Asymptotic sol. (dots) |A| ≫ m2
π

Full solution ∆(A)
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LS equation in the complex plane

Yukawa potential

• Asymptotic solution for k ≫ mπ

f′(ν)

f(ν)
=− λ

θ(k − 2mπ − ν)

k2 − (mπ + ν)2

∆(A) =
λπ2

MNA
e

2λ√
−A

arctanh

(

1−
mπ√
−A

)

λ =
gMN

2π
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LS equation in the complex plane

3P0: singular attractive potential; m3P0:singular

repulsive potential (g → −g)
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All Together

k(mπ)

|∆
(
A

)
|(
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−
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)

k → +∞:
3P0:”Exponential” growth
m3P0:Oscillatory
”Exponential” growth

1S0:Vanishes
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LS equation in the complex plane

Qualitative difference

• Ordinary Potential ∆(A) vanishes for A → −∞

• For the attractive singular potentials |∆(A)| grows faster than any
power

• The full non-perturbative solution for a singular and ordinary
potentials are qualitatively different

With singular potentials short- and long-range physics are
interrelated

Nonperturbative Solutions: Any number of counterterms are not effective
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N/D method with non-perturbative ∆(A)

N/D method with non-perturbative ∆(A)

Once we now the exact ∆(A) for a given potential we can use S-matrix
theory to solve the LS: N/D method with the full ∆(A)

TJℓS(A) =
NJℓS(A)

DJℓS(A)

NJℓS(A) has Only LHC

DJℓS(A) has Only RHC

RHC

ǫ → 0

R → ∞

CI

ǫ → 0

R → ∞
CII

−m2
π
4

LHC

ImDℓ(A) = −Nℓ(A)ρ(A) , A > 0 (RHC−Unitarity)

ImNℓ(A) = Dℓ(A)∆(A) , A < L (LHC)
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N/D method with non-perturbative ∆(A)

(m1,m2) N/D equations for D(A) and N(A)

N/Dm1 m2

N(A) =

m1
∑

i=1

νi(A− C)m1−i +
(A− C)m1

π

∫

L

−∞

dk
2 ∆(k2)D(k2)

(k2
−A)(k2

− C)m1

D(A) =

m2
∑

i=1

δi(A− C)m2−i
−

(A− C)m2

π

∫

∞

0

dq
2 ρ(q2)N(q2)

(q2 −A)(q2 − C)m2

N(A) is substituted in D(A)

Linear IE for D(A) arises

D(0) = 1. To fix a floating constant in the ratio
T (A) = N(A)/D(A)
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Regular interactions

Regular interactions

• N/D01: Regular solution for an ordinary potential

Scattering is completely fixed by the potential

D(A) = 1− iµ
√
A

2π2

∫ L

−∞

dωL

∆(ωL)D(ωL)
√
ωL

(√
ωL +

√
A
)

• N/D11: Additional subtraction in N(A) is fixed in terms of
scattering length

D(A) = 1 + ia
√
A+ i

MN

4π2

∫ L

−∞

dωL

D(ωL)∆(ωL)

ωL

A√
A+

√
ωL

Effective Range Expansion (ERE)

kcotδ(k) = −1

a
+

1

2
rk2 +

∑

i=2

vik
2i
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Regular interactions

• N/D12: Additional subtraction in D(A), r is fixed

D(A) = 1 + ia
√
A− ar

2
A− i

MNA

4π2

∫ L

−∞

dωL

D(ωL)∆(ωL)

ωL

×
[

√
A

(
√
ωL +

√
A)

√
ωL

− i

aωL

]

• N/D22: v2 is fixed additionally

D(A) = (1− 2v2

r
A)(1 + ia

√
A)− ar

2
A

+i
MN

4π2
A

∫ L

−∞

dωL

D(ωL)∆(ωL)

ω2
L

×
[

A√
A+

√
ωL

+ i
2

ra2ωL

(1 + ia
√
ωL)(1 + ia

√
A)

]

The results are just dependent on ∆(A) (input potential) and
experimental ERE parameters

The more subtractions are included the more perturbative N/D is with
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Regular interactions

Example: Regular case. 1S0 Yukawa potential

 0

 2

 4

 6
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 10

 12

 14

 0  50  100  150  200  250  300  350  400

k(MeV)

δ 1
S
0

1
S0

N/D01; LS (black dots)
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Singular Interactions

Analytical properties determine the solutions for singular

potentials

Attractive singular interaction: 3P0

N/D12 T (A) = 0 (N/D11 does not converge)
At least one parameter is needed The scattering volume is fixed

-20

-15

-10

-5

 0

 5

 10

 15

 0  50  100  150  200  250  300  350  400

k(MeV)

δ 3
P
0

3
P0

We compare with
LS renormalized with
one contact term C1:

V (p1, p2) → V (p1, p2) + C1p1p2

N/D12;
LS (black dots);
Phase shifts: Granada
analysis
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Singular Interactions

Repulsive singular interaction: Minus-3P0 (g → −g)

N/D01 No free parameters

Repulsive Singular Potential: LS is insensitive to all Ci

-45

-40

-35

-30

-25

-20

-15

-10

-5

 0

 0  50  100  150  200  250  300  350  400

k(MeV)

δ m
3
P

0

m3P0

N/D12;
LS (black dots);



S-matrix solution of the Lippmann-Schwinger equation for regular and singular potentials

Singular Interactions

Attractive singular interaction:

Sensitivity to scatter inner structure

One can go beyond the case of just one counterterm

Example: NN 1S0 partial wave

LS renormalized with contact terms:

V (p1, p2) → V (p1, p2) + C0 + C1(p
2
1 + p22) + . . .

LS is insensitive or not convergent when including Ci, i > 0
Entem, Arriola, Pavon, Machleidt PRC77,044006(’08)

NLO and NNLO ChPT NN potentials

Full spectral decomposition of the potential
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Singular Interactions

• Not all the N/D types of IE’s converge for sing. pot.
(they do for ord. pot.)

• N/D11 (a) and N/D22 (a, r, v2) are convergent

• N/D01 (at least one parameter is needed) and N/D12 are not
convergent
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Singular Interactions

NLO NNLO
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Subtractive-renormalized LS: points
One counterterm It cannot reproduce r
Yang,Elster,Phillips, PRC80,044002(’09)

a = −23.75 , r = 2.655 fm , v2 = −0.6265 fm3
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T (A) in the complex plane

T (A) in the complex plane

• As a bonus the non-perturbative-∆ N/D method allows to calculate
T (A) for A ∈ C in the 1st/2nd Riemann sheet

This is not trivial with LS

Look for and study resonances, virtual states and bound states

For bound states one does not need to solve the full-off-shell LS equation
or Schrödinger equation

Bound State p = ik, A = −k2

Binding energy of near threshold bound state, gA = 7.45
One does not need to solve Schrödinger equation

Poles of T (A) ↔ zeros of D(A)
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T (A) in the complex plane

• As a bonus the non-perturbative-∆ N/D method allows to calculate
T (A) for A ∈ C in the 1st/2nd Riemann sheet

This is not trivial with LS

Binding energy of near threshold bound state, gA = 7.45
One does not need to solve Schrödinger equation

Poles of T (A) ↔ zeros of D(A)

A = (ik)2 N/D01 N/D11 Schrödinger

∆1π 2.02
∆2π 2.18
∆3π 2.21
∆4π 0.89 2.22

Non-perturbative 2.22 2.22 2.22
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T (A) in the complex plane

• Anti-bound (virtual) state for 1S0

T−1

II (A) = T−1

I (A) + 2iρ(A)

=
DI +NI 2iρ(A)

NI

, Im
√
A ≥ 0

Look for zero of DII(A) . E = A/MN =

N/D11:
−0.070 (LO) , −0.067 (NLO,NNLO) MeV

For the other N/Dm1m2
: −0.066 MeV always
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T (A) in the complex plane

G.E. Brown, A.D. Jackson “The Nucleon-Nucleon interaction”,
North-Holland, 1976. Page 86: “In practice, of course, we do not know

the exact form of ∆(p2) for a given potential and the N/D equations do

not represent a practical alternative to the exact solution of the LS

equation for potential scattering. . . ”

Now this statement is superseded

Furthermore: This method is superior for singular potentials.
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Conclusions

Conclusions

A new non-singular IE allows to calculate the exact ∆(A) in
potential scattering for a given potential

One can calculate the scattering amplitude for regular/singular
potentials from its analytical/unitarity properties.

Any proper solution for singular potentials can be found with this
method

We reproduce the LS outcome with/without one counterterm

One can go go beyond LS+one counterterm for an attractive
singular potential.
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Conclusions

It can be straightforwardly used in the whole complex plane (bound
states, resonances, virtual states)

Including as well higher order chiral NN potentials.
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