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%  The Stage: McMaster

« McMaster Nuclear Reactor Critical April 1959
(First RR at a Commonwealth University) (CERN:1952)

« Bertram Brockhouse shared the 1994 Nobel Prize in  \
Physics with American Clifford Shull for developing neutron §
scattering techniques for studying condensed matter.

www.mcemaster.ca

Today: McMaster Research Funding
about $400M — one of Canada’s
most research intensive Universities

MNR:

* Intense positron beam

« Small-angle neutron scattering
» Neutron activation analysis

* Neutron radiography
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MNR: Commercial production of radio-isotopes for medical purposes
(I-125, Lu-177, Re-186, ...)

Accelerators (F-18), Hot cells, Sources.

https://nuclear.mcmaster.ca/
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- '¥ Analyzing Nuclear Reactors

* Neutron transport equation describes the behaviour
of neutrons in a reactor:

0 Total
It n(r, E, Q ) = Absorptlon
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Y Steady State

* Traditionally, analysis done in steady state:
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ot
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* Concept of criticality:

rate of neutron production in reactor  P(t)

k

rate of neutron loss in reactor O L(t)

criticality is now given by:

~
=
&0
—
a
S
-
-
p=|
=
-
a
<
a0
pet
-
(]
[ ==}
&
_—
[ ]

k<1 subcritical
k=1 critical
k>1 supercritical

* Transport equation may be solved numerically.
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4 Kinetics

 Dynamic changes in the reactor core are usually
dealt with by Point Kinetics:
— Flux shape remains the same.
— Overall flux (neutron density) changes with time

www.mcemaster.ca
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£ on(t) (P - B) e B: delayed fraction

: ot - A n(t) + Z }'i(ci (1) p: reactivity (1-1/k)

c 1=1 A :decay constant

) b3, B /. neutron generation
—Ci) =4 Ci(®+ “En(®), i=1.6| tme

— Reactors only work because of delayed neutrons!




W Numerical Methods

* Direct solution of the transport equation;

— Through a variety of techniques.
— (WIMS, NEWT, DRAGON)
— Very time consuming, small geometries only (lattice cell)

www.mcemaster.ca

— Accurate

e Diffusion calculation;
— (NESTLE, PARCS, DONJON)
— Quick, but not always accurate
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 Monte Carlo techniques;
— (MCNP, KENO, SERPENT, OPENMC, SUPERMC)
— Very accurate, but slow

e Common to all methods: need for nuclear data libraries
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* Monte Carlo

* Follow neutrons (protons, electrons, gammas)
through the geometry (core)
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* Submit them to physics:
— Scattering (elastic, inelastic)
— Absorption (n,gamma) = energy deposition
— Fission: creation of new neutrons
* Account for material properties:
— Density
— Temperature (Doppler broadening of resonances)
— Population control (combing)

* Accuracy determined by statistics
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* Monte Carlo Codes

 Examples:

— Standard code is MCNP (developed originally for highly
super-critical devices.)

— KENO (part of the SCALE package)
— SERPENT (European code)

* Features:

— Need licence (half of your students can’t use half of these
codes)

www.mcemaster.ca
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— Provided as executables only.
Models are entered by input cards;




w MCNP

e KCODE calculation:

Start with neutron source distribution (r,v)

www.mcemaster.ca

N

If absorbed by fissile material, create v new source
neutrons as result of fission.

Follow neutrons until all have absorbed
Obtain k; by new/old number of neutrons.
Renormalize source (combing)

Goto 1.
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e Variance reduction techniques (weighting)

e @Generation-based calculation:
no concept of time! (shakes)
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¥  Geant4 (G4-STORK)

No licence required

Hard-code the model

— Very detailed geometry

— Allows to change the geometry “on the fly”
— Allows for temperature change (feedback)
— On-the-fly Doppler broadening

— Many physics models
Simulation accounts for time!
Population control still needed
Need to think about k.
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£ Show and Tell

t Time to+ T
LEGEND G4-STORK Run First Fission Neutron Fission Capture Elastic Inelastic Inelastic Terminated by
Boundaries Generation @ {n,n" {n,2n) Renhormalization
\ /. ®
R —e I Ve
..... ) %Ej::\_ L - —a +—|
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e Test of flux
distribution

e Use CANDU reactor
fuel bundle.

www.mcecmaster.ca

* Fresh fuel (only U in
the libraries)
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Neutrons density (cm3)

:

3 4 —— GEANT4 Neutron Density
—— DRAGON Meutron Flux
m | | | |
[|] 2 4 b 1] 10 12 ) L

Compare to DRAGON

Centerline Neutron Densily

Fosilon {om)
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e Mono-chromatic
beam on a U-235

slab.

* Beam E =0.0253 eV

Simple Comparison to MCNP
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True multiplication constant

Rprod _ A]\fprod/AT' _ ]\_Zprod
Rlost ANIOSt/AT Nlost

Whereas the generational k is given by

kdyn —

N (generation ¢ + 1)
N (generation 1)

kgen —

They are identical for £ = 1.
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Inzpiring Inmovation and Discovery

k eff

* Converged source (Shannon Entropy)
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Y Validation with Reactor

 SLOWPOKE

Figure 10 Reactor with added D>0 thermal column {On the left is a top view and on the right is a 45 degree view}
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Transient
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= Delayed Neutrons

From delayed precursors (fission products)

Do not identify precursors, rather combine
them in groups

Establish equilibrium concentration
Determine decay time.
Need to do population control as well
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Detailed Benchmark with MCNP

e Case: Super-critical water reactor
* Crucial parameter: coolant void reactivity
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¥ G4-STORK-MCNP for SCWR

MCNP6.1 Settings:

« Same as G4-STORK
 Using thermal scattering
« Using implicit absorption
 Using unresolved resonance regime model
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K, Cases | Fully Cooled | Void Inner Void Outer | Void all Coolant CVR
Coolant Coolant (mk)
G4ASTORK | 1.253+0.003 | 1.206 £ 0.001 | 1.258 +£0.003 | 1.215 + 0.002 -25.0£1.1
MCNP6.1 [1.286 +0.0001 |1.249 + 0.0003 | 1.298 + 0.0003 | 1.266 + 0.0002 | -12.09£0.07

22




s Apples-to-Apples

K, Cases  Fully Cooled Void inner Void Outer Void all Coolant CVR (mk)
Coolant Coolant

G4-STORK 1.2978+0.0007 1.2499+0.0007 1.3057+0.0008 1.2639+0.0006 -20.7£0.61
MCNP 6.1 1.2979+0.0002 1.2562+0.0003 1.3085+0.0002 1.2708+0.0002 -16.4+0.17

www.mcmaster.ca

« The generational criticality method has been
Implemented in G4-STORK;
* in MCNP
 the thermal scattering data,
 unresolved resonance, and
 iImplicit capture models
were turned off.

McMaster University

23




ersily

-
o -
=
=
e
-
a
o
a0
o
-
—_—
[ =]
&
—
[ ]

McMaster

University Fﬁ?
nEpiring Inmovation and Liscovery

Summary

GEANT4 can be used to simulate
“neutron-multiplying systems”

Well-suited for transient calculations
Very much limited by speed.

Requests:

— General speed-up of the code, but especially
— Improve on-the-fly Doppler algorithm

— Provide the tool to create GANDL
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