

Mostafa Jamalipour¹, Luca Zanini²

¹University of Milano-Bicocca ²European Spallation Source (ESS)

ENSAR2 workshop: GEANT4 in nuclear physics

Outline

- Nanodiamonds for neutron reflection
- Nanodiamond cross sections
- Nanodiamond scattering in Geant4
- Benchmark with Exp. Data
- Application
- Conclusion
- Open Issues

Nanodiamonds for neutron reflection

Cold neutron reflector (E<5·10⁻³ eV)

Small scattering probabilitySmall scattering angleDeep penetration

Possible to have an efficient reflector only at gliding angle of neutron incidence

Very cold neutron reflector (E<10⁻⁴ eV)
•Large scattering probability
•Large scattering angle
•Small penetration

Possible to have an efficient reflector at any incident angle

ENSAR2 workshop: GEANT4 in nuclear physics 24-26 April

Nanodiamond cross sections

From Born approx.

• Scattering amplitude

•
$$f(\theta) = -\frac{2m}{\hbar^2} V_0 R^3 (\frac{\sin(qR)}{(qR)^3} - \frac{\cos(qR)}{(qR)^2})$$

Nanodiamond cross sections

• Elastic scattering

 $\sigma_{\rm s} = \int |f|^2 d\Omega = 2\pi \left| \frac{2m}{\hbar^2} V \right|^2 {\rm R}^6 \frac{1}{({\rm kR})^2} I({\rm kR}), I({\rm kR}) = \frac{1}{4} \left(1 - \frac{1}{(2{\rm kR})^2} + \frac{\sin(4{\rm kR})}{(2{\rm kR})^3} - \frac{\sin^2(2{\rm kR})}{(2{\rm kR})^4}\right)$

ENSAR2 workshop: GEANT4 in nuclear physics 24-26 April

Nanodiamond scattering in Geant4

Geant version 4.10

Nanodiamond scattering in Geant4

- Impurites were defined for the nanodiamond. Geant4 Decides based on the mean free path value.
- It will make its random decision based on the mean free path it receives from the process and the values from the predefined model in itself.
- Hydrogen has a large cross section. The lower its percentage, the larger the mean free path it produces. Therefore, the higher the probability of Nanodiamond scattering.

Process 1		
Process 2		
Process 3		

Benchmark with Exp. Data I

Experiment carried out at ILL, 2008

Benchmark with Exp. Data I

Experiment carried out at ILL, 2008

from diamond powder nanoparticles. 2008

Normalized number of neutrons in detectors

Normalized number of neutrons in detectors

Benchmark with Exp. Data II

Experiment carried out at ILL, 2010

ENSAR2 workshop: GEANT4 in nuclear physics 24-26 April

Conclusion

The new process can help calculate the neutron reflection with a good approximation.

The problems related to impurities can almost be handelled in Geant4 although their structure is not welldefined.

Open Issues

- Bragg's scattering on crystal structure of nanodiamond core needs to be implemented.
- Unavailability of libraries for materials producing VCN.
- We have the Solid deuterium for MCNP but we also need to test it in Geant4.
- ➤ We have received Tatsumi's ENDF2G4NDL code (Thanks A. Ribon). We will look at it and see if we can make it work. Help or collaboration is welcome.
- We plan to measure scattering kernels for candidate materials for VCN.
- Evaluated cross sections should eventually be tested in Geant4.