G4_Med, a Geant4 benchmarking tool for medical physics applications

P. Arce¹, D. Bolst², M-C. Bordage³, P. Cirrone⁴, <u>M.A. Cortes-Giraldo⁵</u>, D. Cutajar², G. Cuttone⁴, L. Desorgher⁶, P. Dondero⁷, A. Dotti⁸, B. Faddegon⁹, C. Fedon¹⁰, S. Guatelli², S. Incerti¹¹, V. Ivanchenko¹², D. Konstantinov¹³,
I. Kyriakou¹⁴, G. Latyshev¹³, C. Mancini-Terracciano¹⁵, A. Mantero⁷, M. Maire¹⁶, M. Novak¹⁷, C. Omachi¹⁸, L. Pandola¹⁹, A. Perales²⁰, Y. Perrot²¹, G. Petringa⁴, J.M. Quesada⁵, J. Ramos-Méndez⁹, F. Romano²², D. Sakata², L.G. Sarmiento²³, T. Sasaki²⁴, I. Sechopoulos¹⁰, E. Simpson²⁵, T. Toshito¹⁸, D. Wright²⁶

¹CIEMAT, Spain, ²CMRP, University of Wollongong, Australia, ³CRCT (INSERM and Paul Sabatier University), France, ⁴INFN LNS Catania, Italy, ⁵Universidad de Sevilla, Spain, ⁶Radiophysics Institute, Switzerland, ⁷SWHARD srl, Italy, ⁸Former SLAC, USA,⁹University of California San Francisco, USA, ¹⁰Radboud University Medical Center, The Netherlands, ¹¹CENBG, France, ¹²Tomsk State University, Russian Federation, ¹³IHEP, Protvino, Russian Federation, ¹⁴Ioannina University, Greece, ¹⁵Roma 1, INFN, Italy, ¹⁶LAPP, IN2P3, France, ¹⁷CERN, Switzerland, ¹⁸Nagoya Proton Therapy Center, Japan, ¹⁹INFN Gran Sasso, Italy, ²⁰Clínica Universidad de Navarra, Spain, ²¹IRSN, France, ²²NPL, UK, ²³Lund University, Sweden, ²⁴KEK, Japan, ²⁵ANU, Australia, ²⁶SLAC, USA

ENSAR2 workshop: GEANT4 in nuclear physics

CIEMAT, Madrid (Spain)

April 24th, 2019

Motivation & Goals

- Geant4 medical users community is numerous and very well established.
 - >200 publications in 2018.
- A frequent requirement from users is to get an optimal physics list for each type of simulation in the medical domain.
- Many users use a best guess physics list based on official examples and sometimes tune geometry models to match experimental data (e.g. Linac treatment head or nozzle sims).
- The Geant4 Medical Simulation Benchmarking Group was created to:
 - Identify of high-quality data to produce key benchmarks in the medical field.
 - Include these benchmarks into regression tests.
 - Provide physics list recommendations for frequent scenarios in medical physics:
 - Gamma attenuation, bremsstrahlung...
 - Electron stopping power and scattering
 - Proton & light-ion Bragg curves.
 - Fragmentation reactions, neutron yields, etc.

Geant4 Medical Simulation Benchmarking Group

https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG

- Created in 2014.
- <u>Current Coordination Team:</u>
 - Coordinator: Susanna Guatelli (Univ. Wollongong, Australia)
 - Deputy-coordinator: Pedro Arce (CIEMAT, Spain)
- 37 researchers; 25 institutions from 12 different countries.

ENBG

Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas

Clínica

Jniversidad

le Navarra

DE RADIOPROTECTION ET DE SÛRETÉ NUCLÉAIRE

UNIVERSITY KEK UNIVERSITY UNIVERSITY UNIVERSITY

 IIND

Tested Geant4 Physics Constructors and Lists

Electromagnetic Physics Constructors

- **G4EmStandardPhysics** (a.k.a. "option0")
 - Usually used as reference by Geant4 physics developers for high-energy physics.
- **G4EmStandardPhysics_option3** ("**EMY**" suffix in physics list naming convention)
 - Based of G4EmStandardPhysics with more accurate settings to model dE/dx, nuclear stopping & fluorescence.
- **G4EmStandardPhysics_option4** ("**EMZ**" suffix)
 - <u>Deemed to be the most accurate combination</u> of Geant4 models, regardless of CPU efficiency.
- G4EmLivermorePhysics ("LIV" suffix)
 - Includes data-driven low-energy models for e⁻ ionization and γ based on the Livermore evaluated data libraries.
- G4EmPenelopePhysics ("PEN" suffix)
 - Includes low-energy models for e⁻, e⁺ & γ re-engineered from PENELOPE code

Tested Geant4 Physics Constructors and Lists

Hadronic Physics Constructors (1)

QGSP_BIC_HP

- **G4EmStandardPhysics_option4** is used by default since Geant4-10.5.
- Elastic hadronic scattering:
 - CHIPS model for **p** & **n**.
 High-precision (HP) evaluated data libraries for **n** below 20 MeV.
 - Geant3/Gheisha for d, t, a. For generic ions, derived from $\sigma_T \sigma_{inel}$ (Glauber-Gribov).
- Hadronic inelastic scattering:
 - Incident p & n: Barashenkov Nucleon-Nucleus to get total inelastic XS (<91GeV); Binary cascade (BIC) model for incident below ~10 GeV, followed by Pre-compound and Evaporation models. For for n below 20 MeV, evaluated data are used (HP).
 - <u>Other projectiles:</u> Glauber model with Gribov corrections to get total inelastic XS; intra-nuclear cascade is modeled with *LightlonBinaryCascade* model, followed by Pre-compound & Evaporation.
- Neutron capture & induced fission:
 - HP data libraries below 20 MeV.
- QGSP_BIC_EMY is same as previous, <u>but...</u>
 - No HP libraries for neutrons.
 - G4EmStandardPhysics_option3 is used.

Tested Geant4 Physics Constructors and Lists

Hadronic Physics Constructors (2)

- **QGSP_BERT_HP** differs from QGSP_BIC_HP in:
 - EM interactions are modeled with "option0".
 - For <u>incident p & n</u>, Bertini model (own Precompound+Evaporation) is used for hadronic inelastic scattering.
- In hadronic fragmentation tests, these constructors were tested to model final state:
 - G4IonBinaryCascade
 - *LightIonBinaryCascade* model.
 - G4IonQMDPhysics
 - Quantum Molecular Dynamics (QMD) model.
 - G4IonINCLXXPhysics
 - Liège Intranuclear-Cascade model (INCL).

Integration in *geant-val* for Automatized Regression Tests

https://geant-val.cern.ch/

 G4_Med is integrated in geant-val to execute regularly automatized regression tests on the CERN computing infrastructure.

Tests for Electromagnetic Physics Constructors

- 1. Photon attenuation coefficients (**PhotonAttenuation**)
- 2. Electron collision stopping power (**ElecDEDX**)
- 3. Electron low energy backscattering (**ElecBackScat**)
- 4. Electron forward scattering (**ElecForwScat**)
- 5. Bremsstrahlung from thick targets (**Bremsstrahlung**)
- 6. Low-energy electron Dose Point Kernels (LowEElecDPK)
- 7. Fano Cavity test (FanoCavity)
- 8. Microdosimetry (Microyz)
- 9. Brachytherapy (**Brachy-Ir**)
- 10. Monoenergetic x-ray internal breast dosimetry (Mammo)

Tests for EM & Hadronic Physics Constructors

- 1. Nucleus-nucleus hadronic inelastic scattering cross sections (NucNucInelxs)
- Validation of neutron yields with proton & carbon ion beams (ProtonC12NeutronYield)
- 3. Cross section of isotope production for carbon ion therapy (C12FragCC)
- 4. Carbon-12 fragmentation (C12Frag)
- 5. Carbon-12 fragmentation at low energy (LowEC12Frag)
- 6. Bragg curves of low energy protons in water (**LowEProtonBraggPeak**)
- 7. Light ion Bragg curves (LightIonBraggPeak)
- 8. RBE calculation in proton therapy (LOWEProtonRBE)

Nucleus-Nucleus Inelastic Scattering Cross Section

Geant Validation Portal, SFT group, CERN, 2016-2018

Thick-Target Neutron Yields Proton & Carbon Beams

¹²C on 18 cm water target

Satoh et al., NIM B 387 (2016)

Isotope Production Cross Sections with ¹²C Beams

of an OPERA film. An OPERA film has emulsion layers coated on both sides of a TAC base.

Ref. data: T. Toshito et al., Phys Rev C 75 (2007)

- BIC & QMD provide a better overall agreement with ref. data
- Total fragment production cross section is equal between BIC, QMD & INCLXX

Fragment Yields for ¹²C @ 400 MeV/u on Water Target

Fragment Yields for ¹²C @ 62 A MeV on ^{nat}C Target

- Thin target data
- QMD is not included as energy is below lower limit (100 A MeV)
- Distribution shape differ between BIC & INCL
- Limited reproducibility of data.

C. Mancini-Terraciano et al., IFMBE Proc. 68 (2019) Ref. Data: M. De Napoli et al., Phys. Med. Biol. 57 (2012)

M. A. Cortés-Giraldo (U.Sevilla) | G4_Med | ENSAR2 Workshop: Geant4 in nuclear physics

Bragg Curves for 67.5 MeV Protons in Water

FIG. 1. Raw beam line used for benchmark measurements showing the Ta scattering foil (TA), the four sequentially placed collimating elements of the carbon collimator (C1), beam plug (PL), beam pipe (P), and second collimator (C2), the secondary emission monitor (S) enclosed in an evacuated box (B), the exit window (K) with the third collimator (C3), where the beam passes out of vacuum into air, and the Mylar window (MY) with water phantom (WP). See Table I in the Appendix for detailed geometry. A few simulated proton tracks are shown.

B. Faddegon et al., Med Phys 42 (2015)

Bragg Curves in Water for Proton & ¹²C Beams at Therapy Energies

- Initial energy spread adjusted from experimental Bragg curves.
- Simplified geometry model for simulation
 - Depths of 82% distal level are compared.
- "option0" not accurate enough for ¹²C, other EM constructors agree within 2-3 sigma.
- For proton beams, all physics lists agree within experimental uncertainties.

Survival fraction calculations with 62 MeV Proton Beams

Cell Survival Fraction (S)

 α_i and β_i precompiled for monoenergetic ions from Z=1 to Z=8.

G. Petringa et al., Phys Med 58 (2019)

- Geometry reproduced with Hadrontherapy example
- Cell irradiations done in water at 2 cm depth
- Prostate DU145 & breast cancer cell line MDA-MB-231
- Experimental survival fractions can be successfully derived with Geant4

G4

17

More Test Results at TWiki Webpage & geant-val

List of current tests

Currently the G4-Med system includes 18 tests

Test	geant-val layout	Authors
Photon attenuation coefficients	PhotonAttenuation	S. Guatelli, L. Pandola
Electron stopping powers	ElectronDEDX	V. Ivanchenko
Low energy electron backscattering	ElectronBackScat	P. Dondero, A. Mantero, V. Ivanchenko, M. Novak
Electron scattering from foils at 13-20 MeV kinetic energies	ElecForwScat	B. Faddegon, J. Ramos-Méndez
Bremsstrahlung yield	Bremsstrahlung	B. Faddegon, J. Ramos-Méndez
Fano cavity	Fano cavity	P. Arce , M. Maire, M. Novak
Electron Dose Point Kernel	LowEElecDPK	S. Incerti, MC. Bordage, I. Kyriakou, Y. Perrot
Microdosimetry	Microyz	S. Incerti, I. Kyriakou
Brachytherapy - dose rate	Brachy-ir	S. Guatelli, D. Cutajar
Dosimetry - clinical 5-6 MeV electron beam	To be added	L. Desorgher
Dosimetry for mammography	Mammo	C. Fedon, I. Sechopoulos
Hadronic nucleus-nucleus inelastic cross section	NucNucIneIXS	D. Sakata, S. Guatelli, E. Simpson
Bragg curves in water for 67.5 MeV protons	LowEProtonBraggPeak	B. Faddegon, J. Ramos-Méndez
Absolute neutron yield for protons	ProtonC12NeutronYield	B. Faddegon, J. Ramos-Méndez
Production cross sections of different fragments	C12FragCC	C. Omachi, T. Toshito, T. Sasaki
62 MeV /n C-12 fragmentation on Carbon target	LowEC12Frag	C. Mancini-Terracciano
400 MeV/n C-12 fragmentation	C12Frag	D. Bolst, S. Guatelli, F. Romano
Estimation of proton radiobiological damage	LowEProtonRBE	G. Petringa, GAP Cirrone L. Pandola, G. Cuttone
Light ion (proton, 3He, carbon) range and depth dose curves in water	LightIonBraggPeak	M. Cortes-Giraldo, A. Perales, J. M. Quesada Molina

Conclusions & Outlook

- Currently, 18 tests have been included in G4_Med to benchmark EM and Hadronic physics capabilities of Geant4 for medical physics applications.
 - Some test physical quantities, others include more realistic scenarios.
- G4_Med is integrated in geant-val for regular executions on the CERN computing infrastructure.
- Overall, *G4EmStandardPhysics_option4* (_**EMZ**) is recommended for accurate simulations.
- QGSP_BIC_HP (_EMZ) physics list provides a good overall description.
 Shielding (_EMZ) physics list can be also used for carbon therapy.
- **Future work** will focus in two main aspects:
 - Inclusion of new tests and refinement of existing ones.
 - Assessment of the different physics list choices in terms of accuracy and CPU performance across future releases of the Geant4 toolkit.
- More information at our TWiki page: <u>https://twiki.cern.ch/twiki/bin/view/Geant4/G4MSBG</u>

Thanks for your attention!

