EXTENDING GEANT4 "RADIOACTIVE DECAY" FOR THE ANALYSIS OF COMPLEX TOTAL ABSORPTION ANALYSIS CASES

A. Algora, E. Ganioglu, D. Jordán, E. Nácher Instituto de Física Corpuscular, CSIC - UV

Use of G4 in Nuclear Physics

- Design and Optimization
 - Best geometry and materials, e.g. R³B-CALIFA
 - Best configuration, e.g. PRESPEC / AGATA
- Data Analysis
 - Aid the data analysis process, e.g. particle ID plots
 - Key factor in data analysis, e.g. efficiency calculation, data unfolding.

Outlook of the talk

- Introduction: beta decay measurements
- The TAS inverse problem
- Beta decay of ¹⁸⁶Hg
- Summary and Conclusions

Beta decay measurements

- β-decay is an important source of nuclear structure information.
- From direct measurements one can obtain half-lives, energy levels, Q_{β} -values (masses), beta intensity distributions (β feeding)...

 Measuring the β feeding distribution is far from being trivial!!

Beta decay measurements

- Medium mass and heavy nuclei: large level density at high energy.
- Very fragmented feeding distr. and γ-deexcitation pattern.
- HPGe arrays fail to detect systematically the upper part of the γ-cascade resulting in a wrong feeding and B(GT) distr.

Volume 71B, number 2

PHYSICS LETTERS

21 November 1977

THE ESSENTIAL DECAY OF PANDEMONIUM: A DEMONSTRATION OF ERRORS IN COMPLEX BETA-DECAY SCHEMES

J.C. HARDY *, L.C. CARRAZ, B. JONSON [‡] and P.G. HANSEN [‡]

CERN, Geneva, Switzerland

Received 14 September 1977

Obviously our results have wider implications than simply to the decay of 145 Gd. Every complex β -decay scheme that is based on γ -ray peak analysis and intensity balances must now be regarded as doubtful. In such schemes, the β -decay feeding to each level is assumed to be the difference between the total γ -ray intensity depopulating the level and that seen feeding it. If significant γ -ray intensity remains unobserved, these differences are incomplete and the derived β decay branching ratios, for all but the strongest transitions, could be wrong by orders of magnitude. In discrediting the "measured" ft values for most β -transitions in complex decay schemes, this conclusion reflects on a large body of existing data, and surely indicates the need to reevaluate the usefulness of a whole class of experiments.

Total Absorption Spectroscopy (TAS)

Total Absorption Spectroscopy (TAS)

The TAS Inverse Problem

• The number of counts detected in channel *j* relates to the beta feeding to level *i* through the linear equation:

$$d_j = \mathop{\text{a}}_{i} R_{ij} f_i$$

 f_i : Feeding to energy level "*i*" d_j : Counts in channel "*j*" of the spectrum R_{ij} : Response Function (matrix) to the decay

The TAS Inverse Problem

No way to measure $R_{ii}!!$

nel *j* relates to the quation:

The only possibility is calculate it using MC simulations: *Geant4*

• We can then use the EM algorithm to unfold the data:

$$f_{i}^{(k)} = a_{j} \underbrace{\frac{R_{ij}}{R_{mj}}}_{m} f_{m}^{(k-1)} d_{j} , \quad i = 1, 2...m$$

Calculation of R_{ij} from individual γ 's and β 's: Study of the EM and others applied to TAS: D. Cano, J.L. Taín, NIM A430 (1999) 333 J.L. Taín, D. Cano, NIM A571 (2007) 728

26/04/2019

The Response Function

 β -decay of ²⁴Na: test bench for our simulations

The Response Function

 β -decay of ²⁴Na: test bench for our simulations

Event generator including the 'unknown' part: D. Jordán et al., NIM A828 (2016) 52

Study case: ¹⁸⁶Hg decay

Study case: ¹⁸⁶Hg decay

- We calculate the response of the detector to β -feeding, not from individual γ rays plus β particles but from the complete decay generated by G4RadioactiveDecay
- We extend the ENSDF data tables included in RadioactiveDecay5.1.1 and PhotonEvaporation4.3.2 to include the unknown part of the decay / de-excitation (statistical model)
- We analyze the data gated on Au x-rays making sure that this includes the EC component plus the β⁺ component. Both contain a proper treatment of CE and the generation of associated X-rays, which is crucial for the description of the experiment (penetration and summing of X-rays).

Study case: ¹⁸⁶Hg decay

Error bands determined by the error in the Q_{EC} value and in the $T_{1/2}$ and by the different possible solutions.

Summary & Conclusions

- To calculate the R_{ij} we count on an event generator that includes the quasi-continuum part (missing in ENSDF). We However it does not include the generation of conversion electrons and their subsequent x-ray emission (and some other 2nd order effects...)
- The G4RadioactiveDecay class accounts for the aforementioned effects missing in our event generator. However it is based exclusively on ENSDF and therefore lacks of the quasi-continuum at the upper part of the decay scheme.
- We have merged the two approaches extending the ENSDF data tables included in RadioactiveDecay5.1.1 and PhotonEvaporation4.3.2 using our event generator approach to include the unknown quasi-continuum part of the decay / de-excitation (statistical model).
- We have analyzed the decay of ¹⁸⁶Hg gated on Au x-rays that was impossible to analyze with our event generator or with the G4RadioactiveDecay separately. The beta decay of ¹⁸⁶Hg shows a strong prolate signature as compared to QRPA calculations

THANKS FOR YOUR ATTENTION!!

What is still missing... and highly desireble!

- Beta-delayed particle emission: protons, neutrons and alphas.
- Possibility to include broad resonances above S_p or S_n or S_a rather than discrete levels (e.g. beta decay of ⁸B in ⁸Be).

- Shape of the g.s. of some N~Z nuclei in the A=70 region inferred from the β-decay
 - E. Nácher, A. Algora et al, Phys. Rev. Lett. 92 (2004) 232501
 - E. Poirier, F. Marechal et al, Phys. Rev. C69 (2004) 034307

- Reactor decay heat and related issues
 - A. Algora, D. Jordan et al, Phys. Rev. Lett. 105 (2010) 202501

E. Nácher

Some other TAS results

Reactor decay heat and related iss

0.4

0.3

0.2

10²

cooling time (s)

10

10³

10⁴

CSIC

d

- β-decay studies for a Monochromatic beam facility
 - A. Algora, E. Nácher et al, Phys. Rev. C 70 (2004) 202501
 - M.E. Estevez A. Algora et al, Phys. Rev. C 84 (2011) 034304

Some other TAS resul

- β-decay studies for a Monochrom
 - A. Algora, E. Nácher *et al*, Phys. Rev.
 M.E. Estavaz A. Algora *et al*, Phys. Rev.

E. Nácher