1/16

The use of Geant4 simulations for training a DNN to perform the NeuLAND data analysis

C. A. Douma

24 April 2019

Machine Learning & DNNs

Deep artifical Neural Network (DNN) → Can learn any math. function/alogorithm if network is complex enough

BES-III detector

NeuLAND detector: ID incoming neutrons

→ Our case!

Other applications...?

Resolve individual tracks in drift chamber in magnetic field. H. de Vries, MSc thesis, RUG (upcoming).

R3B Experiment in a nutshell

R3B Experiment in a nutshell

Full kinematic reconstruction of nuclear <u>Reactions</u> with <u>Radioactive <u>Relativistic Beams</u>
Neutrons are detected by NeuLAND → <u>Neu(=new) Large Area Neutron Detector)</u></u>

Scintillator bars: 50 bars per plane, 30 hor. planes & 30 vert. planes; PMT on both ends of the bar

Scintillator bars: 50 bars per plane, 30 hor. planes & 30 vert. planes; PMT on both ends of the bar

neutron

Measured PMT signals

Reconstruct (t,x,y,z,E) from TDC & QDC

What we need:

Reconstruct neutron momentum vector From Reaction & First Hit.

Which one is the First hit?

What we need:

Reaction (t,x,y,z): measured by tracking detectors

Beam

Target

NeuLAND
First hit (t,x,y,z)
of neutron

Reconstruct neutron momentum vector From Reaction & First Hit.

neutron

Our data: NeuLAND digis: (t,x,y,z,E) signals

Use of Machine Learning

Given a set of (t,x,y,z,E)-signals:

- How many first hits do they contain? (What is the multiplicity?)
- 2. Which of those signals are the first hits? (Which are the neutrons?)
- → Use Geant4 Monte Carlo simulations to generate data.
- → Feed it to a DNN for training.
- → But what if simulations do not represent reality?
- → We need accurate Geant4 physics lists!

Our data: NeuLAND digis: (t,x,y,z,E) signals

NEBULA detector

SAMURAI setup: T. Kobayashi et al., NIMB 317, 294 (2013)

Ion TOF hodoscope

Simulation done by: J. Mayer, Ph.D. thesis, Universität zu Köln (2018)

→ Benchmark single-neutron detection efficiency

Benchmarking of Physics Lists

& quark-gluon string model with low E neutron physics

BIC: same, but uses Binary Cascade model

INCL++: same, but uses Liege Intranuclear Cascade model & N-reactions A≤18

Our observation: Exp ≈ ½ (BERT+INCL++)

- → What causes the diff. between phys. lists?
- → Consequences for DNN?

Shower developement

→ Study in the simplest configuration

10⁶ events simulated → ≈0.1% stat. inaccuracy.

MC: #events where sec. tracks were created.

Det: #events where both PMTs fired.

- → Interaction rate is ≈ same.
- → Diff. in detection rate due to what?

Phys. List	Interactions:
QGSP_INCLXX_HP	MC: 7.15% Det: 4.75%
QGSP_INCLXX	MC: 7.22% Det: 4.81%
FTFP_INCLXX_HP	MC: 7.20% Det: 4.79%
QGSP_BERT_HP	MC: 7.21% Det: 3.88%
QGSP_BIC_HP	MC: 7.21% Det: 4.48%
QBBC	MC: 7.15% Det: 4.45%
ShieldingM	MC: 7.17% Det: 3.89%

Energy deposition

QSGP_INCLXX_HP QSGP_INCLXX

QSGP_BERT_HP QSGP_BIC_H

FTFP_INCLXX_HP

10³

contributions

Protons

- → ShieldingM & BERT produce less protons than the others
- → Scattering behaviour is ≈ same

- → Behaviour is ≈ same for all physics lists
- → Height is slightly different due to number of protons
- \rightarrow Differences are: nr. of produced protons & presence of (d,t,α) tracks.

Deuterons

→ INCL++ has more deuterons & they are slightly more forward boosted.

→ The produced deuterons also deposite (a lot) more energy for INCL++.

Tritons

- → Scattering behaviour is ≈ same as for deuterons (just less particles).
- → E_{dep} is also ≈ same for non-INCL++ models

Alphas

- \rightarrow Number of α -particles differs.
- → Scattering behaviour is ≈ same.

- → Low energy deposition is ≈ same.
- Few α-particles at higher energies, except for INCL++.

Comparing the contributions

→ We need: $\exp \approx \frac{1}{2}$ (BERT + INCL++)

 \rightarrow We see: |BERT - INCL++| = 50% due to (d,t,α) tracks

= 25% due to nr. of prod. protons

= 25% other/indirect causes

250 MeV neutrons:

NeuLAND demonstrator 4 double planes @ 11m

Geometry & event generator are slightly 35 different from J. Mayer, Ph.D. Thesis → So no

benchmarking to exp. data (still working...)

Physics list effects on DNN

Single neutron detection efficiency @ 250 MeV & 4 double planes:

20% – 32% (dep. on
$$E_{thres}$$
) & |BERT – INCL++| ≈ 8%

High neutron detection efficiency

Low neutron detection efficiency

- → DNN uses neighbouring relations to find primaries
 - M. Polleryd, M.Sc. thesis, Chalmers University (2017)
- → Physics list effects could be significant.
- → DNN is still under development
- → Use classical methods to estimate effects

14/16

Physics list effects

Traditional Method for multiplicity determination:

- → Simulate INCL++ & BERT
- → exp ≈ ½ (BERT + INCL++)

	200 MeV	600 MeV	1000 MeV
0n	77±4%	74±1%	74±1%
1n	73±8%	79±2%	80±1%
2n	62±11%	65±1%	71±1%
3n	58±10%	56±1%	61±1%
4n	46±8%	52±3%	54±3%
5n	57±8%	61±2%	62±4%

- → Physics lists errors are larger at lower energies
- → Relative errors: larger at higher multiplicities
- → NeuLAND is designed to detect high multiplicities

30 double planes for NeuLAND @ 14 m distance

Physics list effects

Full NeuLAND detector: 30 double planes

Traditional Method for multiplicity determination:

- → Simulate INCL++ & BERT
- → exp ≈ ½ (BERT + INCL++)

	200 MeV	600 MeV	1000 MeV
0n	77±4%	74±1%	74±1%
1n	73±8%	79±2%	80±1%
2n	62±11%	65±1%	71±1%
3n	58±10%	56±1%	61±1%
4n	46±8%	52±3%	54±3%
5n	57±8%	61±2%	62±4%

Partial NeuLAND detector: 12 double planes

200 MeV	600 MeV	1000 MeV
82±2%	82±1%	83±1%
43±32%	63±3%	63±1%
57±5%	51±1%	52±1%
43±15%	42±1%	44±1%
49±12%	41±2%	37±1%
35±15%	48±5%	50±1%

- → Physics lists errors are larger at lower energies
- → Relative errors: larger at higher multiplicities
- → NeuLAND is designed to detect high multiplicities
- → Physics list errors grow when detector gets smaller.

Conclusion

- NeuLAND detects fast neutrons: 100 MeV 1000 MeV.
- Benchmarking revealed: exp ≈ ½ (QGSP_BERT_HP + QGSP_INCLXX_HP) for single-neutron detection efficiency.
- Diff. = 50% due to (d,t,α) tracks, 25% due to nr. of prod. protons & 25% other.
- Effects are <2% at higher energies, but very significant at lower energies.
- These differences prevent us from properly training our DNN.

→ A new physics list is needed with:

- E_{dep} from (d,t,α) tracks & nr. of prod. protons between BERT & INCL++.
- neutron detection eff. (E_{dep} in CH₂ scintillators): ½ (BERT + INCL++).
- implement with special attention at lower neutron energies.

Thank you!