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Problems below 100MeV/A

- Despite the numerous and relevant application

would use it, there is no dedicated model to * Exp. data [Plot from De Napoli et
nuclear interaction below 100 MeV/n in Geant4 . G4-BIC g e T
. G4-QMD 7671, Nov. 2012]

- Many papers showed the difficulties of Geant4 in

this energy domain: 10
S
- Braunn et al. have shown discrepancies up to %

. . . 1
one order of magnitude in 12C fragmentation §

at 95 MeV/n on thick PMMA target N 1

= 10°
- De Napoli et al. showed discrepancy specially E

on angular distribution of the secondaries 1072
emitted in the interaction of 62 MeV/n 12C on
thin carbon target

0 200 400 600
Energy (MeV)

o . Cross section of the 6Li production at 2.2
- Dudouet et al. found similar results with a 95 degree in a 12C on raC reaction at 62 MeV/n.

MeV/n 12C beam on H, C, O, Al and Ti targets



Suitable models

e

‘'SMF (Stochastic Mean Field

. . BLOB
- Developed by Maria Colonna .
(INFN LNS, Catania) (Boltzmann-Lagevein
One Body)

- describes the time evolution of the

density distributi .
ensity distribution | - Implemented by Paolo Napolitani

- involves the implementation of an (IPN, Orsay)

effective attractive mean-field nuclear
interaction Il - Derived from SMF

- mean-field is self-consistent,
depends on the density

Adds fluctuations in the dynamics
treating the nucleon-nucleon

\ - includes two-bodies correlations J\  collisions as a stochastic process




SMF and BLOB
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SMF and BLOB
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SMF and BLOB
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SMF and BLOB
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Update of a 12C fragmentation benchmark

Update of the benchmark = 102,:_ 6=114 E 6=14.4
originally published on De Napoli %’ - S
et al. Phys. Med. Biol., vol. 57, no. = 10
22, pp. 7651-7671, Nov. 2012 3 S
E 1F
62 MeV/n 12G on £ 4o
thin carbon target = -k
1OZEE120+”"’“C—>3HateszlvleV/A 0=17.2 E 6=19.4
doubly differential '
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a\/ai|ab|e at the [C. Mancini-Terracciano et al. IFMBE
. o . . Proceedings Series 68/1 (2018), pp. 675-685.
time of the original publication doi: 10.1007/978-981-10-9035- 6_126]



Update of a 12C
fragmentation
benchmark

Update of the benchmark
originally published on De Napoli
et al. Phys. Med. Biol., vol. 57, no.

22, pp. 7651-7671, Nov. 2012

- alpha

[C. Mancini-Terracciano et al. IFMBE
Proceedings Series 68/1 (2018), pp. 675-685
doi: 10.1007/978-981-10-9035- 6_126]
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Geant4d interface to SMF and BLOB

- Developed as a G4-model

- Loads the SMF/BLOB output

- Samples the final state
- Fragments mass and charge
- (Gas particles emitted

- Applies Geant4 de-excitation to excited fragments
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Interfacing SMF and BLOB to Geant4

SMF and BLOB
had been
iINnterfaced with
Geant4 and its
de-excitation
phase

9%/ 9E/9Q [mb/sr/MeV]

Similar results
between SMF and 2
BLOB _ 80 10C

E [MeV/A]
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Interfacing SMF and

3LO

13

SMF and BLOB
had been
iINnterfaced with
Geant4 and its
de-excitation
phase

Similar results
between SMF and
BLOB

53 to Geant4
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Coalescence

- To Insert more than two bodies correlation in an
effective way

mplemented between SMF/BLOB and the de-excitation
ohase

- Two small fragments are coalesced it AX<6 tm

- Applied recursively
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Increasing test particles number

ncreasing the test particles number (from 100 per
nucleon to 500 per nucleon) the excitation energy
oroblem is mitigated

- At the moment it is not possible to increase the number
of test particle even further (the arrays are not all
dynamically allocated)
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Correcting for ground state energy

Light nuclei are not stable in BLOB and SMF

We calculated the spurious excitation energy

of isolated light nuclel

Subtract such energy to produced

fragments
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Preliminary results with
BLOB and Geant4

+alpha
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Preliminary results with BLOB and Geant4

26 4+ "™'c - 3H at 62 MeV/A

- tritium
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Preliminary results with BLOB and Geant4

126 4 "'C s 2H at 62 MeV/A
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Preliminary results with BLOB and Geant4

26 4 "'C — H at 62 MeV/A
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Preliminary results with

BLOB and Geant4
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With larger
fragments further
improvements
are needed

We plan to
modify the
surface

coefficient
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Future plans

/" Not-so-long term

/" Short term

Increase number of |
L" test particles to 1000 |

- Add test particle clustering
to take into account 3 and |
4-body interaction terms

- lest changing
\ surface coefficient

— — — —_—

-+ Benchmark with more
data

- Automatise BLOB/SMF
running from Geant4

~ Long term
\» Port the code on GPU /‘

‘f//’ !
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Profiling BLOB

- Accurate profiling done with Intel VTune Amplifier
(https://software.intel.com/en-us/vtune)

. More than 75% of the running ~ © E2psed Time " 13669

Total Thread Count;: 1

time iS Spent in the fUﬂCtiOn Paused Time Os
that calculates the laplacian © Top Hotspots

f .th f' |d This section lists the most active functions in your

O e I I Ieaﬂ Ie application. Optimizing these hotspot functions
typically results in improving overall application
performance.
Function Module ~ CPU Time -
lapla run-orig @€ 176.281s
erff libm.so.6 17.201s
define_two_clouds_rp  run-orig 9.658s
sortrx run-orig 7.018s
powf libm.so.6 5.377s

[Others] 16.403s



https://software.intel.com/en-us/vtune

Code optimisations

- Optimisation of the function “lapla” without changing the code structure
+ 68% speed-up in the function

- 52% speed-up overall

) Elapsed Time : 231.966s ) Elapsed Time'Q10.2355>
>) CPU Time : 231.938s >) CPU Time : 110.223s
Total Thread Count: 1 Total Thread Count: 1
Paused Time Os Paused Time Os

) Top Hotspots

This section lists the most active functions in your

) Top Hotspots |-

This section lists the most active functions in your

application. Optimizing these hotspot functions

typically results in improving overall application
performance.

Function Module CPU Time

lapla run-orig 176.281s
erff libm.so.6 17.201s
define_two_clouds_rp  run-orig 9.658s
sortrx run-orig 7.018s
powf libm.so.6 5.377s
[Others] 16.403¢

application. Optimizing these hotspot functions

typically results in improving overall application
performance.

Function Module CPU Time -
lapla run 56.086s
erff libm.so.6 17.038s
define_two_clouds_rp run 9.051s
sortrx run 7.450s
powf libm.so.6 5.184s
[Others] 15.414¢
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) Elapsed Time = 403.9255>

>) CPU Time : 669.258s
Total Thread Count;: 24

USing Openl\/l D Paused Time ~; 0s

) Top Hotspots

This section lists the most active functions in
" " " " i ) your application. Optimizing these hotspot
‘ DlStrl bUtl ng the mal n |OOp Of the |ap|a functions typically results in improving overall
application performance.
on 24 cores

Function Module CPU Time

func@0x18a90  libgomp.so.l  #%379.998s
" func@0x18bf0 lib .s0.1
- Small gain overall QoS lngem £e
lapla_._omp_fn.0 run-omp

lapla run-omp 37.877s

- A lot of time spent Iin distributing data o hmees o8

L thel J
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Using Variational Auto Encoder

- Despite the optimisation, BLOB is still too slow

- The idea:
- Bin the PDF output of BLOB
+ Creating a 3D “image”

- Train a Variational Auto Encoder (VAE)
to reproduce such “images’

- Condition the VAE to impact parameter

27



Variational Auto Encoders

Encoder

q(z|x) Z

p(z)

» Train an identity function



Variational Auto Encoders

1 z = p(x|z)

p(z)

Use the decoder to produce artificial images

29



Variational Auto Encoders

- Painting like Van Gogh...

30



Conditioning to b

Taking inspiration from:

[Automatic chemical design using a data-driven

. . SMILES input
continuous representation of molecules,
Gomez-Bombarelli at al. arXiv:1610.02415] ENCODER
Neural Network
VAE for generating new chemical
compounds with properties that are CONTINUOUS
. . MOLECULAR
of interest for drug discovery REPRESENTATION
(Latent Space)
To organize latent space w.r.t
chemical properties they jointly
. : : DECODER
trained the VAE with a predictor Neural Network
It predicts these properties from SMILES output

latent space representations

31



Conditional VAE

+ Convolutional 3D encoding

- Conditioned latent space

- Symmetric decoding

image: InputLaver

input:

(None, 128, 128 128, 2)

output:

(None, 128, 128 128, 2)

'

input: | (None, 128, 128, 128.2)
encoder3D: Model
output: [(Nore, 2), (None, 2)]
N
/// \\\
“~ “h
mput: | [(None, 2), (None, 2)] ‘ input: | (None, 2)
sampler: .amhda precictar: Model
output: (None, 2) ouniput: | (None, 1)
mnput: (None, 2)
decodear3D: Model

output: | (None, 128, 128, 128, 2)
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Training dataset

- The BLOB final state is a list with the position in the phase
space of fragments and gas particles

- Fragments: A and Z (real), P, Q and Excitation energy

+ Gas particles: Z, P and Q. Each represent a 1/500 probability
of having a nucleon in that position of phase space

-1 000 events
- Generated with linear impact parameter

+ 90% for training and 10% of them for test

33



Reducing dimensionality

-+ Only events with 2 fragments are

considered

- We divided the test particles in two

samples:
Projectile like (red)

- Target like (blue)

- sin(®) instead of 6 to:

34

- have same sign

- enhance small angles




Reducing dimensionality

- o reduce the dimensionality and

use the keras 3D kernels

- We consider only:

35

- The modulus of the
momentum

ts angle with the collision axis

- The distance of each test
particle with the fragment
center




Reducing dimensionality

Fragments are represented by
5007A particles

P is sampled with gaussian
distribution:

mean = Pfrag

*sigma = Excitation energy

- All with the same 6

r=20
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2C + ™'C = “He at 62 MeV/n
0=4.9

—
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Testing reconstruction

—
o
N

—_
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—

-ragments are
identified selecting
r<1fermi

—
<

9%c/9E/0Q [mb/sr/(MeV/n)]

U

Momentum = average

Excitation energy =

. 0=21.8
variance
0 = average
~20""40" 60" 80 100
E [MeV/n]
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Testing reconstruction

9%c/9E/0Q [mb/sr/(MeV/n)]

Lack of particles at
mid rapidity

Underestimation of
neck events

Because of
coalescence not
active

10°
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10 =5

101k

e
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K

|
20 40 60 80
E [MeV/n]
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Testing reconstruction

107"

2C + ™'C = “He at 62 MeV/n
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Testing reconstruction

Same on deuterium

Next step will be add
a 3rd channel for
neck particles

9%0/9E/9Q [mbl/sr/(MeV/n)]

And clustering
algorithm

103:E
102%
10

i
107
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20 4 "G s 2H at 62 MeV/n
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With coalescence

+ Using the coalescence

- The mid rapidity lack is
mitigated

9%c/9E10Q [mb/sr/(MeV/n)]

10°

1072k

1073 L

2C + "™'C — “He at 62 MeV/n

0=22

10°E

102:
102-
10-1;
10-22

1073

10°E

102'E

L | T oo NN
20 40 60 80 100
E [MeV/n]
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With coalescence

Also for deuterium

10°
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10
’
107"
1072
1073

9%0/0E/0Q [mb/sr/(MeV/n)]

E 12C + "G — 2H at 62 MeV/n E
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E E
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E VAE E
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E.. E

I LT
100 12
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Challenges

Sparse

Large input
(1283 numbers)

Small dataset (for the
moment)

Impact parameter
distribution non
uniform (for the
moment)
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200
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100

50

0
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Latent space

+ 40 epochs of training

- Events with similar impact
parameters are close In
latent space

- Especially the events with

very large impact
parameters

- b is linearly distributed

(a uniform distribution is
needed)

A U o w
[lwus)] Je1swesed 10edw|

w

N

=
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VA

= output
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Output distributions

- The generated distributions

(green) looks similar to the input
(blue)

- The generated event has been

46

generated sampling two
gaussian in latent space with:

means = position of the input

sigmas = 0.1




Summary

- An interface between BLOB/SMF and Geant4 has been developed
Samples the final state (fragments and nucleons emitted)
Include a coalescence
Corrects excitation energy for large b

Corrects the excitation energy of stable fragments
- The agreement with doubly differential data is good for light fragments
- Further optimisations are needed for larger fragments

carlo.mancini.terracciano@romai.infn.it
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Sackup



Coalescence

Mitigates the gap
between the
fragments

o/0E/0Q [mb/sr/MeV]
. o

produced by fol

projectile-like and  .f
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Coalescence

- Similar results
with BLOB
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Coalescence

52

- Mitigates the
gap between
projectile and
target
fragments

9%0/9E/9Q [mb/sr/MeV]

* BLOB

E ¢ BLOB+coalescence

20 40 60

P L
80 100
E [MeV/A]



Coalescence

- Reduces the

>
excess of 2 4 0=11.4 0=144
= —_
O} — '_I_'I—I—I
IS 1E =
< - ;
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=F
[+ BLOB
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..I...I...I...IE...I...I...I...I...I...
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Why GPUs

BLOB and SMF explore the
time evolution of the density

distribution with test particles Many test particles

100 to 1000 test particles
per nucleon

- All the same

- At each step the mean field

potential is calculated Only one possible

iINnteraction

- The test particle can interact ]
only with elastic scattering

Low th read‘ divergency
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