Radioactive Decay in Geant4: Status and Plans

ENSAR2 Workshop
CIEMAT (Madrid)
26 April 2019
Dennis Wright (SLAC)

Outline

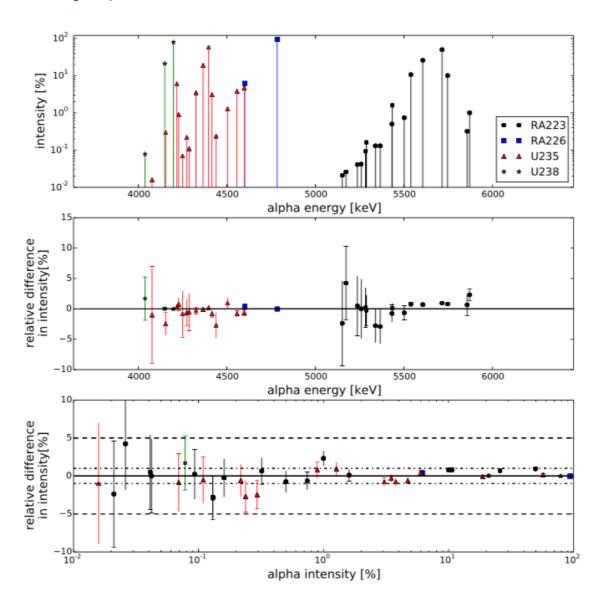
- Summary of recent features of Geant4 radioactive decay
- Strengths and weaknesses of the models
- Improvements required or desired
- Plans/tasks and discussion
- Summary

G4RadioactiveDecay Redesigned

- Refactored
 - each decay type now its own class, with common base class
 - biasing and analog code separated → biased code is now a separate class derived from the analog base class
- 10 separate decay modes in seven separate classes
 - α
 - β⁻, β⁺
 - electron capture (from K, L, M, N shells)
 - isomeric transition
 - neutron emission
 - proton emission

Databases Improved

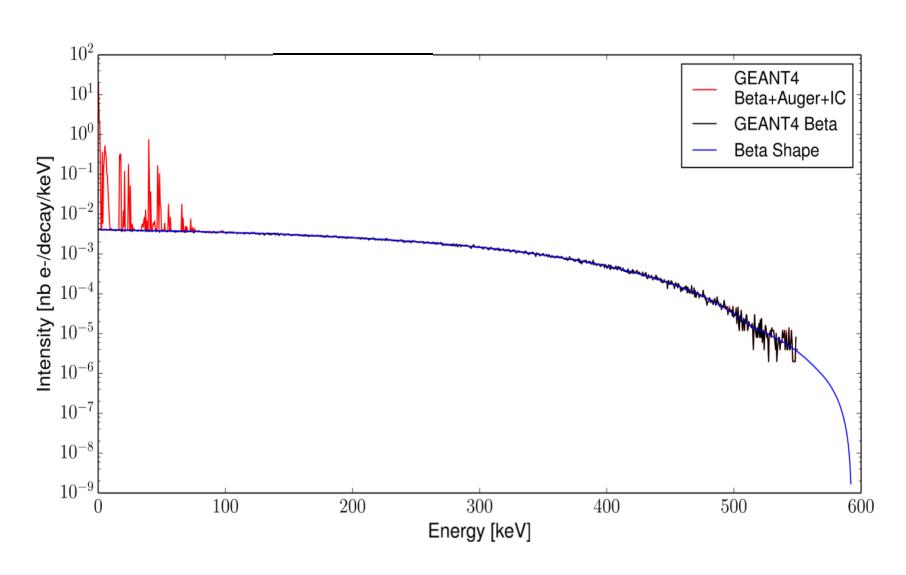
- RadioactiveDecay5.3 (ENSDF)
 - new channels added: proton emission, neutron emission
 - expanded format: floating levels +X, +Y, ... of initial and final levels, where available (Xx999[Ex+X])
 - gamma levels now consistent with those in PhotonEvaporation
- PhotonEvaporation5.3 (ENSDF)
 - expanded format: floating levels, multipolarity, multipolarity mixing
 - all levels listed with an order number to speed up calculations
 - all daughter levels now grouped and ordered underneath their mother level


Modeling Improvements

- Improved physics
 - better electron, neutrino spectrum shapes from beta decay
 - correlated gamma emission for IT decays
 - more electron capture channels
 - improved atomic relaxation
 - new decay modes
- Paid more attention to energy conservation
 - use atomic masses instead of nuclear masses
 - improved atomic relaxation also helped
- Activation calculations refactored and cleaned up
 - led to fix of long-standing bug

Alpha Decay

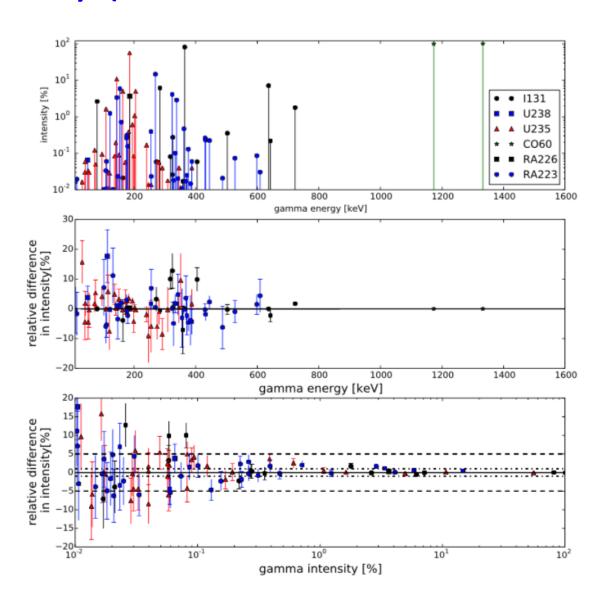
- Already quite good
 - simple two-body decay
 - excellent energy conservation (~ fraction of eV)
 - MC relative intensities often within 5% of theory
- Currently no atomic rearrangement as part of decay
 - is there a model for throwing away two electrons?


α Decay (Geant4 vs. DDEP calculation)

Beta Decay

- e⁺/e⁻ spectra look good for allowed transitions
 - also have good theoretical shape corrections for unique first, second and third forbidden transitions
- Only one case (²¹⁰Pb) for which we have a non-unique forbidden shape in Geant4
 - it takes many parameters to describe these
 - would need to extend both database and code to add these
- No atomic relaxation as part of decay
 - need to pick up or throw away one electron

β - Decay (161Tb) (Geant4 vs. theory)


Electron Capture

- Very good now that up to N-shell process is included
 - probably don't need to go to O-shell
- Energy conservation is ad hoc
 - currently add a dummy electron to make up deficit between the binding energy and the kinetic energy given by the relaxation code
- Electron binding energies themselves are also a concern
 - use experimental or theoretical?
 - new set available using experimental values wherever possible

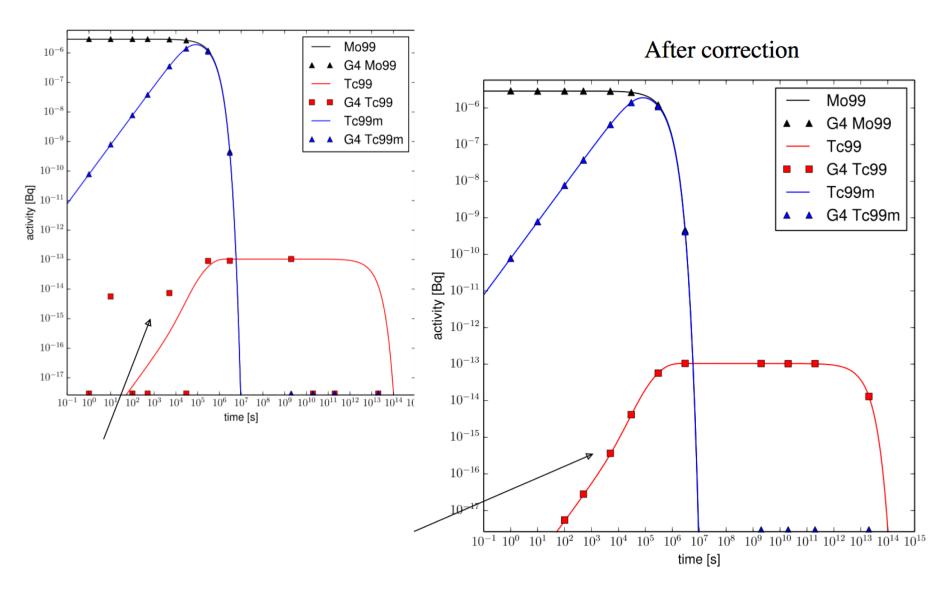
Gamma Transitions (IT)

- Uses G4PhotonEvaporation from Geant4 deexcitation module
 - consistency between radioactive decay and nuclear deexcitation
 - internal conversion included
 - radioactive decay can use all the extra physics of deexcitation
 - fluorescence, Auger
- Correlated gamma emission added
 - gamma angular distributions now depend on multipolarity of transition, if included in database
 - however, very time-consuming if high multipolarity
 - currently turned off by default

IT Decay (Geant4 vs. DDEP calculation)

Gamma Transitions (IT)

- Energy conservation is ad hoc
 - same situation as for EC
- Binding energies
 - same situation as EC
- Because radioactive decay uses same gamma deexcitation module used in nuclear de-excitation, some tension in how the interface is used
 - radioactive decay always uses single gamma decay, while general de-excitation module uses single, multiple and continuous gamma emission
 - different initialization options for BuildPhysicsTable
 - different CPU efficiency options


Neutron and Proton Emission

- A nucleus with excess of neutrons (or deficit of protons) can decay by neutron emission (below the neutron drip line)
- A nucleus with excess of protons (or deficit of neutrons) can decay by proton emission (above the neutron drip line)
- Both coded the same as α decay \rightarrow two-body final state
 - also no atomic re-arrangement after these decays

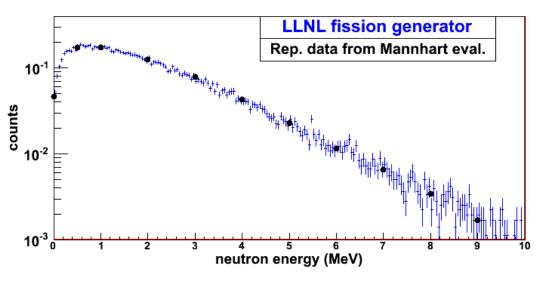
Activation

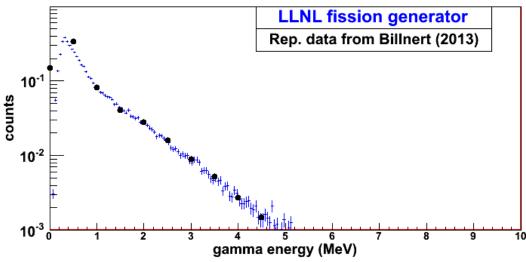
- Generalized Bateman equations for activation
 - multiple decay chains, multiple sources, feeding
 - source and detector time convolution
 - designed to decay one parent nucleus through all its decay chains, to stable products
 - all decays and products generated in a single track
 - secondaries from all generations of decay collected into final state
 - weights attached based on branching ratios, source and detector time convolution
 - collected for dose calculations
- Many biasing options available to speed up calculation (see later slide)

Activation

Biased Decay

- Activation was originally a fully integrated part of RDM
 - more like an application than a process → separate it from RDM
 - use base class like a process, then add biasing
- Biasing options
 - nucleus duplication (splitting)
 - branching ratio biasing (make all branches equal)
 - source time convolution
 - detector time convolution
 - directional biasing (in both activation and base)
 - set nucleus limits (in both activation and base)

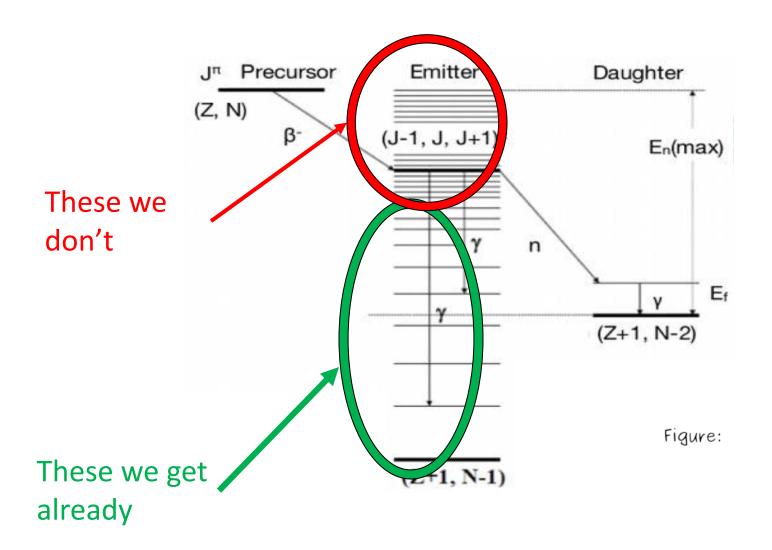

Biased Decay


- Further development somewhat restricted by maintaining interface with G4GeneralParticleSource
 - some radioactive decay methods may be obsolete → can we delete?
- Cannot currently apply bias without running activation
 - may want to bias the decay in the base class
- Biasing options
 - no option to re-weight a single decay channel (currently can only choose all channels equal)
 - conform more to new Geant4 general biasing?

New Decay Modes Requested

- Spontaneous fission
 - requested by SuperCDMS
 - recently committed to repository (ready for 10.6 beta)
 - uses Livermore fission model class G4fissionEvent
 - neutron energy spectrum sampled from function fitted to Mannhart evaluated data set
 - gamma spectrum from parameterization of data
 - no heavy fission fragments
 - can be used for several heavy isotopes, but mostly for ²⁵²Cf
 - possible to generate fragments and let them decay by gamma emission to get detailed gamma spectrum

Spontaneous Fission of ²⁵²Cf



New Decay Modes Requested

- Beta-delayed neutrons and protons
 - nucleus beta decays to a daughter far from drip line, then decays by neutron or proton emission
 - some of these decays already happen in normal chain
 - no coding required
 - complete implementation requires a model of beta decay to densely populated, highly excited level region
 - use native Geant4 nuclear deexcitation model to emit neutron (or proton) from this region?
 - arbitrary decision about where low excitation region ends and high excitation region begins

Beta-delayed Neutron Emission

New Decay Modes Requested

- Double beta decay
 - rare but important, requested by EXO and others
 - ordinary $(2\beta + 2\nu)$
 - could be implemented in Geant4
 - product of two beta decays
 - problem: very long decay times (~10²¹ years)
 - must treat otherwise stable nucleus as unstable
 - what about neutrino-less (>10²⁵ years)?

Validation

- Comparison to deterministic calculations
 - compare value generated by Geant4 to theoretical calculation
 - comparison may indicate missing physics in Geant4
- Comparison to data (ENSDF, DDEP)
 - very little of this done because we start from database
 - however, we must check that the code is OK → agreement must be very good
 - need to display this to users → validation suite
- In-flight vs. at-rest → never checked
- A number of tests in examples/extended/rdecay01, rdecay02

Plans and Improvements

- Implement spontaneous fission (nearly done)
- Add biasing to radioactive decay process (not activation)
- Implement full beta-delayed p, n emission
- Implement double beta decay
- Validate correlated gamma emission
- Check every test in extended examples
- RDM is a process, not a model → change this?

Plans and Improvements

- Almost no thought given to CPU optimization
 - are there any RDM applications that require high speed?
- If speed not important, go for more detail
 - better physics models
 - more decay branches
- Should we enable Geant4 to do equilibrium calculations?
- Develop a plan to handle handle transitions from floating to non-floating or vice versa

Summary

- Problems identified
 - very little CPU optimization
 - atomic relaxation is not always applied, and is not complete
 - much validation required
 - still room for improvement in several decay channels
 - still room for improvement in biasing
- Many improvements made
 - · databases updated, expanded and re-formatted
 - new decay channels added
 - improved energy conservation
 - first steps made to separate activation from the RD process
- Message to Geant4 developers
 - consider more theory-based models
 - reach out to more nuclear physics users to determine their needs