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Motivations
Facts

* Closed string theories are UV/IR mixing theories (modular invariance);

* They may have divergences.

Questions:
* How do we treat these divergences without breaking modular invariance?

“ Is it sensible to introduce a spacetime energy scale and a renormalisation
procedure which respects the UV/IR mixed structure?



Outline

* One-loop corrected gauge couplings in closed String Theory;
* How to deal with divergences;
* A modular invariant regulator;

* An example of how to use it .



One-loop (threshold) correction to gauge couplings in closed String Theory
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One-loop (threshold) correction to gauge couplings in closed String Theory
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¥ This subtraction is needed to make the integral finite §
BUT
it breaks worldsheet modular invariance !




Many different regulators are possible

* A simple subtraction of the divergence [Kaplunovsky, 1987}
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It corresponds to remove massless states => definition of threshold correction.

* Introducing a cut-off in the fundamental domain
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Breaks modular invariance!

|Don Zagier, 1981; C. Angelantonj, I. Florakis, B. Pioline, 2011, ArXiv: 1110.5318.]
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Many different regulators are possible

* Deform the integrand in a modular invariant way
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The regulator:
* Should be modular invariant;
* Must suppress any power-law divergence for large 75 ;

* Should leave the rest of the theory intact as much as possible.



A modular invariant regulator

A possible choice
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* Based upon Kiritsis and Kounnas regulator [E. Kiritsis, C. Kounnas, 1995] but modified

in a critical way. Indeed:

« We can define u® = pa®/a’ as an energy scale;
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[S. A. Abel, K. R. Dienes, 2021, ArXiv: 2106:04622]



A modular invariant regulator

Exponential
decay
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The case of 6D N =1 => 4D N = 2 toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]
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* T and U are the so called moduli of the (space-time) torus.
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The case of 6D N =1 => 4D N = 2 toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]
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| Q Worldsheet modular invariance is broken!
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The case of 6D N =1 => 4D N = 2 toroidal compactifications

Famous result [L. Dixon, V. Kaplunovsky, J. Louis, 1990]
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: ) Everything is regulated and modular invariant!
1-loop :
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Our result

S e DKL result

~ Restore the unregulated
- theory when a —> 0
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o Mo Correction which restore
full worldsheet modular
invariance
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...contains all the required behaviour in limits...
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Running of the gauge coupling

. Logarithmic
running

Deep
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Conclusions and Outlook

* We regulated the theory fully respecting modular invariance and UV/IR mixing

properties;
* We have seen how gauge couplings run in a particular class of compactifications;
* This formalism can be applied in full generality to any model. Indeed, using the methods

developed in arXiv:2106.04622 for calculating the Higgs mass in string theory, we worked

out the general case (to appear soon, arXiv: 2301:nnnnn)
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Thanks for your attention!



