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Higher-Order Gravities

Definition
A higher-order gravity, or equivalently higher-derivative gravity, is any theory of
gravity (possibly with non-minimally coupled matter) of the form:

I =
1

16πG

∫
dd+1x

√
|g|

R+ F0 +
∑
j,k,p,n

αn,k,p,j`
σn,k,p(∇kRn)µ1...µs

j Fp,jµ1...µs

 ,

EFT perspective is implied — GR should be recovered at low energies.

Higher-order gravities capture corrections for energies beyond GR, but way
below natural scale of Quantum Gravity, as in String Theory [e.g.Callan,
Friedan, Martinec, Perry ’85; Gross, Witten ’86; Bergshoeff, de Roo ’89].

In this talk: metric formalism and Levi-Civita connection. However, there
are other intriguing and canonical possibilities, such as metric-affine theories
[e.g.Borunda, Janssen, Bastero-Gil ’08; Olmo ’11].
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Examples of higher-order gravities

Some instances of purely-gravitational higher-order gravities:

Starobinsky’s model [Starobinsky ’80]:

I =
1

16πG

∫
dd+1x

√
|g|
[
R+ `2R2

]
.

Particular instance of f(R) theories [Buchdahl ’70; Sotiriou, Faraoni ’10]:

I =
1

16πG

∫
dd+1x

√
|g| [R+ f(R)] .

Lanczos-Lovelock theories [Lanczos ’32,’38; Lovelock ’70,’71].

I =
1

16πG

∫
dd+1x

√
|g|

R+

[D/2]∑
k=2

αk`
2k−2X2k

 ,
X2k =

(2k)!

2k
δν1[µ1

δν2µ2
. . . δν2kµ2k]R

µ1µ2
ν1ν2 . . . R

µ2k−1µ2k
ν2k−1ν2k

For k = 2, Gauss-Bonnet density X4 = R2 − 4RµνR
µν +RµνρσR

µνρσ.
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Examples of higher-order gravities

Some instances of higher-order gravities with matter (for simplicity, U(1) gauge
vector field):

Einstein-ModMax theory [Bandos, Lechner, Sorokin, Townsend ’20; Flores-
Alfonso, González-Morales, Linares, Maceda ’20]:

I =
1

16πG

∫
d4x
√
|g|
[
R− cosh γF 2 + sinh γ

√
(F 2)2 + (Fµν ? Fµν)2

]
.

Higher-order gravity with a non-minimally coupled U(1) vector field:

I =
1

16πG

∫
dd+1x

√
|g|
[
R− F 2 + `2(2Rµ

αFµνFαν −RαβρσF ρσFαβ)
]
.
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Holography

By holography or the holographic principle we refer to the possibility of
describing physics in (d+ 1)-dimensions through the physics of a d-dimensional
system [’t Hooft 1993; Susskind ’94].

First realization of holographic principle: AdS/CFT correspondence [Maldacena
’97; Gubser, Klebanov, Polyakov ’98; Witten ’98]:

AdSd+1 CFTd

Holography

Original proposal: physical equivalence of type IIB String Theory on AdS5 × S5

with N = 4 Super-Yang-Mills theory. Furthermore, it states that the strong-
coupling limit of CFT side may be described by classical Supergravity.
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AdS/CFT correspondence

AdSd+1 CFTd

Holography

CFT interpreted to live on boundary of asymptotically AdS spacetime (bulk).
CFT correlators through bulk computations and vice versa through the use of
a holographic dictionary.

If one is interested in capturing finite-coupling effects in the CFT side, need of
adding corrections to tree-level low-energy string effective actions...
−→ Higher-order gravities.

Finite-coupling effects of holographic CFTs are captured by
higher-order terms.
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Higher-order gravities and Holography

This has motivated the study of holographic aspects of generic higher-order
gravities from a bottom-up approach: examining arbitrary higher-order
gravities whose CFT dual needs not to be known:

Why?

They allow us to capture more generic universality classes of CFTs.

They inspire us to elucidate universal results valid for any CFT [e.g.Myers,
Sinha ’10; Mezei ’14; Bueno, Myers, Witczak-Krempa ’15].

This program has been successfully carried out in the literature in the recent
years for purely-gravitational higher-order theories [e.g.Cai, Nie, Zhang ’10;
Myers, Sinha ’10; Boer, Kulaxizi, Parnachev ’11; Perlmutter ’13; Hung, Myers,
Smolkin ’14; Chu, Miao ’16; Dey, Roy, Sarkar ’16; Lü, Mai ’18; Edelstein, Grandi,
Sánchez ’22].
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Motivation for our work

Addition of vector field, which allows probing CFTs with chemical potential,
has also been considered. However, most analyses involved perturbative approach
or sticking to very particular models [e.g. Liu, Szepietowski ’08; Cremonini,
Hanaki, Liu, Szepietowski ’09, Myers, Sachdev, Singh ’11; Cai, Pang ’11].

Non-perturbative holographic study of higher-order gravities including
non-minimal couplings to a gauge vector field seems to be largely missing in
the literature.

However, this is of interest: at the very least, they capture finite coupling
effects of holographic CFTs.

In this talk: Exact exploration of holographic higher-order
gravities with non-minimal couplings to a gauge vector field.
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Electromagnetic Quasitopological Gravities (EQGs)

A key issue for this exact exploration: have a bulk theory amenable to analytic
computations, typically not the case when higher derivatives are involved.

A class of higher-order gravities (in (d+ 1)-dimensions) with non-minimally
coupled (d− 2)-form B was identified: Electromagnetic Quasitopological
Gravities (EQGs) [Cano, ÁM ’20]. If H = dB:

ds2 = −N(r)2f(r)dt2 +
dr2

f(r)
+ r2dΣ2

k,(d−1) , HQ = Qωk,(d−1) ,

where dΣ2
k,(d−1) denotes either spherical (k = 1), flat (k = 0) or hyperbolic

(k = −1) metric and ωk,(d−1) the corresponding volume form:

Definition (Electromagnetic Quasitopological Gravities (EQGs))
A theory L(gµν , Rµνρσ, Hµ1...µd−1

), with H = dB, is an EQG if and only if:

δLN0,f

δf
=
∂LN0,f

∂f
− d

dr

∂LN0,f

∂f ′
+

d2

dr2

∂LN0,f

∂f ′′
+ · · · = 0 ,

where N0 = const. and where we defined LN,f =
√
|g|L|ds2N,f ,HQ

.
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Electromagnetic Quasitopological Gravities (EQGs)

Why such definition for EQGs?

ds2 = −f(r)dt2 +
dr2

f(r)
+ r2dΣ2

k,(d−1) , HQ = Qωk,(d−1) ,

This is precisely the structure of magnetic Reissner-Nordström solutions!

We wanted to study higher-order gravities with vector field, since they
correspond to holographic CFTs with a chemical potential...

How do we canonically construct an associated bulk theory with gauge vector
field? −→ Dualization.
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Electromagnetic Quasitopological Gravities (EQGs)
Dualization: In d+ 1 dimensions, a map between two theories:

gµν

Hµ1...µd−1 = (d− 1)∂[µ1
Bµ2...µd−1]

L(R,H)

 −→


gµν

Fµν = 2∂[µAν]

Ldual(R,F ) = L(R,H(F ))
+ 4

(d−1)!
(?H(F ))µνFµν

 ,

where Hµ1...µd−1
(Fρσ) is obtained by inverting

F =
(d− 1)!

4
?
∂L
∂H

.

This dualization map corresponds to the usual electric-magnetic duality:

Maxwell equation Maxwell equation

Bianchi identity Bianchi identity

L(R,H) Ldual(R,F )

1 It maps theories with (d− 2)-forms into theories with 1-forms.

2 If (gµν , Hα1...αd−1
) is magnetic solution ⇒ (gµν , Fαβ) is electric solution!
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Electromagnetic Quasitopological Gravities (EQGs)

Definition of EQGs implies following properties in generic d+ 1 dimensions:

1 HQ = Qωk,(d−1) always solves its equation of motion (eom) and its Bianchi.

2 Under electric-magnetic duality, amagnetic (d−2)-form B transforms into
an electric 1-form A.

3 The eom of f(r) is at most second-order1. Here just deal with theories
with algebraic eom (EQGs).

4 The only gravitational mode propagated on maximally-symmetric back-
grounds is a spin 2-massless graviton.

5 Black-hole thermodynamics can be computed analytically.

6 At least in four dimensions, there exist EQGs with fully regular electric black
hole solutions [Cano, ÁM ’20].

7 EQGs exist at all orders and for every d ≥ 2 [Cano, ÁM ’20; Bueno, Cano,
Moreno, van der Velde ’21; Cano, ÁM, Rivadulla, Zhang ’22].

1If such eom is second order, the theory should be properly called an Electromagnetic Gen-
eralized Quasitopological Gravity.
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Holography of EQGs

All previous features ensure the study of holographic aspects of EQGs is viable
and non-trivial, so that it is worth to explore.

In particular, we will focus on:

LEQG,4 = R+
d(d− 1)

L2
− 2

(d− 1)!
H2 +

λ

(d− 2)(d− 3)
L2X4

+
2α1L

2

(d− 1)!

(
H2R− (d− 1)(2d− 1)Rµνρσ

(
H2
)ρσ

µν

)
+

+
2α2L

2

(d− 1)!

(
Rµν

(
H2
)ν
µ
− (d− 1)Rµνρσ

(
H2
)ρσ

µν

)
+

βL2

(d− 1)!2
(
H2
)2 ]

,

where α1, α2, β, λ are dimensionless couplings, L a length scale, X4 the
Gauss-Bonnet density and

(
H2
)ρσ

µν
= Hρσα1...αd−3Hµνα1...αd−3

.

In this talk we will examine:

1 Two- and three-point correlators.

2 Charged Rényi entropies.
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Two- and three-point correlators

EQGs possess (d− 2)-form B and their electric-magnetic dual, a vector field A.

While bulk computations are better carried out in the frame of (d− 2)-form,
holographic aspects of EQGs will be understood within vector-field frame.

Bulk vector fields in AdS become non-dynamical on the boundary and couple
to a current Ja. More concretely, Ja couples to vector field with units of energy:

Ãµ = `−1
∗ Aµ , µ = `−1

∗ At|bdry ,

where µ denotes chemical potential.
We shall be interested in the following two- and three-point correlators:

〈Tab(x)Tcd(x
′)〉 =

CT
|x− x′|2d

Iab,cd(x− x′) ,

〈Ja(x)Jb(x
′)〉 =

CJ
|x− x′|2(d−1)

Iab(x− x′) ,

〈Tab(x1)Jc(x2)Jd(x3)〉 =
fabcd(a2, CJ)

|x12|d|x13|d|x23|d−2
.

Correlators are fixed up to the central charges CT , CJ and the parameter a2.
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Two- and three-point correlators

Regarding the 〈TT 〉 correlator, it is identical to that of Gauss-Bonnet gravity
[Buchel, Escobedo, Myers, Paulos, Sinha, Smolkin ’10]:

CT =
(1− 2λf∞)Γ(d+ 2)

8(d− 1)Γ(d/2)π(d+2)/2

L̃d−1

G
.

where L̃ = L/
√
f∞ and f∞ = 1

2λ

[
1−
√

1− 4λ
]
.

Regarding the 〈JJ〉 correlator:

CJ =
CEM
J

αeff
, CEM

J =
Γ(d)

Γ(d(2− 1)

`2∗L̃
d−3

4πd/2+1G
,

αeff = 1− f∞α1(3d2 − 7d+ 2)− f∞α2(d− 2) .
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8(d− 1)Γ(d/2)π(d+2)/2

L̃d−1

G
.

where L̃ = L/
√
f∞ and f∞ = 1

2λ

[
1−
√

1− 4λ
]
.

Regarding the 〈JJ〉 correlator:

CJ =
CEM
J

αeff
, CEM

J =
Γ(d)

Γ(d(2− 1)

`2∗L̃
d−3

4πd/2+1G
,

αeff = 1− f∞α1(3d2 − 7d+ 2)− f∞α2(d− 2) .



Two- and three-point correlators

The parameter a2 controls the energy flux measured at infinity and is given by
[Hofman, Maldacena ’08]:

〈E (~n)〉J =
E

Ω(d−2)

[
1 + a2

(
|ε · n|2

|ε|2
− 1

d− 1

)]
,

where 〈E (~n)〉J denotes energy flux at infinity in direction ~n after local
insertion of Ja, E is the energy and Ω(d−2) is volume of unit sphere.

For our theories, the parameter a2 reads:

a2 = −2d(d− 1)((2d− 1)α1 + α2)f∞
(d− 2)αeff

.

We observe it is generically non-zero if α1, α2 6= 0 −→ Different CFT
universality classes.
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Causality and unitarity constraints

Our family of theories under consideration: four free (a priori) parameters.

However, they are not completely free — the hypothetical dual theory must
satisfy some physical properties, such as unitarity.

CT > 0, equivalent to 1−2λf∞ > 0. It implies that gravitons have positive
energy in the bulk.

CJ > 0, equivalent to αeff > 0. It implies that photons have positive energy
in the bulk.

Energy flux 〈E (~n)〉J positive at any direction, equivalent to −d−1
d−2 ≤ a2 ≤

d−1. Remarkably, it turns out that this condition on the boundary is equiv-
alent to avoiding superluminal propagation of electromagnetic waves in
the bulk.
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Charged Rényi entropies

Rényi entropies [Rényi ’61] are a very useful tool to quantify entanglement in
QFTs, generalizing von Neumann’s entanglement entropy.

Given bipartition of Hilbert space into subspaces A and B, let ρA = TrBρ be
reduced density matrix of A. Rényi entropies Sn are defined as:

Sn =
1

1− n
logTrρnA .

Entanglement entropy is recovered in the limit n→ 1.

The appropriate generalization of Rényi entropies in presence of global
symmetries was recently proposed [Belin, Hung, Maloney, Matsuura, Myers,
Sierens ’13]. If:

ρA(µ) =
ρAe

µQA

Tr(ρAeµQA)
,

Charged Rényi entropies Sn(µ) are defined as:

Sn(µ) =
1

1− n
logTr [ρA(µ)]

n
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Charged Rényi entropies

Assume quantum theory is defined in d-dimensional flat space. Consider a
bipartite fixed (d− 1)-dimensional time slice, having a (d− 2)-dimensional
sphere of radius R as entangling surface.

RA

B

By Casini-Huerta-Myers map [Casini, Huerta, Myers ’11] charged Rényi
entropies are related to thermal entropy of same theory placed on a
hyperbolic cylinder:

Sn(µ) =
n

n− 1

1

T0

∫ T0

T0/n

Sthermal(T, µ)dT , T0 =
1

2πR
.

Holographically, this implies:

Sn(µ) =
n

n− 1

1

T0
(Ω(T0/n, µ)− Ω(T0, µ)) ,

where Ω is grand-canonical potential.
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Charged Rényi entropies

Ω can be computed exactly in terms of the horizon radius, but we need it in
terms of T . We obtain it in the limit of small µ:

Sn(µ) =
na?νd−1

(n− 1)

[
2− x̂d−2

n (x̂2
n + 1)

2

+
(d− 2)

αeff

(
1− x̂dn

1− (x̂2
n−1)
αeff

(d(d− 2)α1 − 1)

)
µ̄2

]
+O

(
µ̄4
)
,

where dx̂n = n−1 +
√
n−2 + d(d− 2), Lµ̄ = `∗R

√
f∞ and constants a?, νd−1.

Setting n = 1, one obtains a notion of charged entanglement entropy. We get:

SEE(µ)

νd−1
= a? +

πdCJ
(d− 1)2Γ(d− 2)

[
1 +

(d− 2)a2

d(d− 1)

]
(µR)2 + ...

This last result turns out to be universal, valid for every CFT in d ≥ 3 [Bueno,
Cano, ÁM, Rivadulla-Sánchez ’22]. See Pablo Cano’s talk!
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Conclusions

We carried out an exploration of the holographic aspects of any-dimensional
higher-derivative Einstein-Maxwell theories in a fully analytic and non-
perturbative fashion.

We derived exactly two- and three-point correlators and mentioned the
connection between unitarity on the boundary and causality in the bulk.

We explicitly observed the ability of higher-order gravities of providing holo-
graphic CFTs belonging to different universality classes.

We studied charged Rényi entropies and obtained them for small µ.

These holographic theories inspired the discovery of a universal result
valid for any CFT.
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Future Directions

Identify examples of Electromagnetic Generalized Quasitopological Grav-
ities (second-order equation for metric function f(r)) in arbitrary dimensions
and explore their holographic properties.

Inspect in more detail the relation between causality constraints in the bulk
and unitarity constraints in the boundary CFT.

Examine further holographic aspects of our four-derivative EQGs (e.g.
conductivities).

Study the effects of non-minimal couplings for CFTs with chemical poten-
tial beyond Quasitopological class.

¡Muchas gracias!
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