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What this talk is about
• M5-M2(-P) black hole: The microstates 

that are made of fractionated M2 
branes account for the entropy.


• We found: They can transition into 
microstates with 16 local 
supersymmetries.


A Conventions 68

1 Introduction

1.1 Fivebrane dynamics

The dynamics of coincident fivebranes in string theory is governed by little string the-

ory, a somewhat mysterious non-gravitational, nonlocal theory in six spacetime dimen-
sions [1, 2] (for reviews, see [3, 4]). We understand the outlines of little string theory,
but little more. For instance, it is nonlocal on the scale n5↵

0
⌘ ↵

0

little, where n5 is the
number of fivebranes and ↵

0 is the inverse tension scale of the fundamental (F1) string.
Su�ciently supersymmetric backgrounds exhibit T-duality symmetry. Fivebrane ther-
modynamics at su�ciently high energy density is dominated by a Hagedorn gas of little
strings [5]. Yet much more remains obscure.

The presence of fivebranes fractionates fundamental string charge and tension. One
can see this in the M-theory lift of type IIA, where the fundamental string is an M2-
brane wrapped around the circular 11th dimension. Upon encountering a stack of n5

coincident M5-branes (transverse to the circle), the wrapped membrane can split into
n5 strips stretching between successive M5’s around the circle, see Figure 1. The charge
fractionates, and so does the tension of the e↵ective “W-strings”, providing a heuristic
picture of the origin of the little string’s tension scale.

Figure 1: Open M2-branes stretched between a stack of M5-branes. If the latter are separated

in their transverse space (not depicted here), in the type IIA limit this bound state reduces to

D2-branes stretched between NS5-branes.

When the stack of fivebranes is wrapped around M ⇥ S
1 (where M = T

4 or
K3), su�ciently excited states are are microstates of black holes in the e↵ective five-
dimensional supergravity, whose entropy matches the Hagedorn entropy of the little
string [5],

S = 2⇡
p

NL + 2⇡
p
NR , (1.1)

where NL,R are the excitation levels of the little string.

If one binds n1 strings to n5 fivebranes (i.e. F1-NS5 or D1-D5 bound states), they
will fractionate into little strings in a superselection sector of total little string winding

– 2 –

M5

M2

= T
4y

« Dijkgraaf-Verlinde-Verlinde

-Maldacena microstates »
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account for the black-hole entropy!


• We expect their backreaction to be 
horizonless microstates.
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The 3-charge black hole and near-horizon geometry
• Type IIA/IIB:    


• Take brane system with 3 charges:


D5(y, ), D1(y), P(y)

or NS5(y, ), F1(y), P(y)


 naively, 1/8-BPS everywhere

ℝ4,1 × S1
y × T4

T4

T4

⇒



The 3-charge black hole and near-horizon geometry

only on the coordinates of R4:

ds
2 = �

2
p
H1H5

⇥
dt

2 + dy
2 + (HP � 1)�1 (dy � dt)2

⇤
+
p
H1H5 ds

2

R4 + (H1H5)
�1/2

ds
2

T 4 ,

(2.3)

where

H1,5,P = 1 +
Q1,5,P

r2
. (2.4)

The supergravity charges can be expressed in terms of the number of branes and momen-
tum quanta:

Q1 =
gs↵

0

v
N1 , Q5 = gs↵

0
N5 , QP =

(gs)2↵0

v⇢2
y

NP , (2.5)

where v ⌘
V4

(2⇡)4↵02 is the volume of the four-torus T 4 measured in units of 2⇡ls and ⇢y ⌘
Ry

ls

is the radius of the y circle measured in units of ls.

What are the regime of validity of the supergravity solution (2.3)?

• First, we want to be in a regime where the string loop corrections are small: gs ⌧ 1.
• Second, we want the stringy ↵

0 corrections to the geometry to be small. Thus,
we require the curvature invariants to be small everywhere in the geometry. This
amounts to constrain the supergravity charges to be large: Q1,5,P � ↵

0. In other
words, the characteristic radius, r1,5,P ⌘

p
Q1,5,P , of each harmonic function ap-

pearing in the geometry is large in string units, r1,5,P ⌧ ls.

The event horizon of the D1-D5-P black hole (2.3) lies at r = 0. The area of the
horizon is given by the size of the orthogonal spatial directions to r, at r = 0. The area
of the five-dimensional geometry is

A
(5)

H
⇠

p
Q1Q5QP ⇠ g

2

s
(ls)

3
p
N1N5NP , (2.6)

but the Bekenstein-Hawking entropy is independent of the string coupling and of the
string length:

SBek.-Hawk. =
A

(5)

H

G
(5)

N

= 2⇡
p
N1N5NP , (2.7)

where G
(5)

N
is Newton’s constant in five dimensions.

2.2 Counting the states of the three-charge black hole

In this subsection, we explain how string theory provides a description of the microstates
of the three-charge black hole, in the weak-coupling regime (gsN ⌧ 1) [13, 14]. Indeed,
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• Type IIA/IIB:    


• Take brane system with 3 charges:


D5(y, ), D1(y), P(y)

or NS5(y, ), F1(y), P(y)


 naively, 1/8-BPS everywhere


• Use harmonic function rule

 develops horizon in 

supergravity

ℝ4,1 × S1
y × T4

T4

T4

⇒

⇒



Possible conclusion:


Global charges and 
supersymmetries seem to control 
near-horizon geometry.


Therefore all brane systems 
develop the same horizon:

To have access the information 
about the microstates, probe 
singularity region, where 
supergravity breaks down.
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The 3-charge black hole and near-horizon geometry
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 naively, 1/8-BPS everywhere


• Use harmonic function rule

 develops horizon in 

supergravity

ℝ4,1 × S1
y × T4

T4

T4

⇒

⇒

• Local supersymmetry 
enhancement:

String-theory excitations (branes, 
strings) combine together to 
form a bound state that is locally 
1/2-BPS (16 susies).

The 3-charge black hole and near-horizon geometry



Local SUSY enhancement — example

Fllyl F1 - Ply , j
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• Ex.: F1(y) and parallel P(y):

• F1or P preserve 16 real supercharges


• Together, F1-P preserve 8



Local SUSY enhancement — example
• Actually the string can carry 

momentum: profile


• The F1-P profile preserves the 
same global supersymmetries…
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Local SUSY enhancement — example
• Actually the string can carry 

momentum: profile


• The F1-P profile preserves the 
same global supersymmetries…

• …but locally it is a F1( ) 

boosted by orthogonal P( )

• F1( )-P( ) preserves 16 

supercharges
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Local supersymmetry 


 information on microstate?→



Local VS global supersymmetries
• Branes, strings  constraint on : 
→ ϵ

Π ϵ ≡
1
2

(1 + P) ϵ = 0

Traceless involution


P2 = 1

tr(P) = 0

Projector

Π2 = Π

Constraint halves number

of supersymmetries

Killing spinor

See e.g. [Bena, Hampton, Houppe, YL, Toulikas ’22]
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Not necessarily a projector!
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Local supersymmetry enhancement

Local supersymmetry enhancement:


Given a set of global supersymmetries, there sometimes 
exists a whole moduli space of brane/string systems, 
parameterised by , preserving those same global 
supersymmetries, but whose number of local 
supersymmetries is enhanced.


— identify the additional excitations (« glues ») to make a 
bound state


— determine the charge-to-mass ratios .

{αi(x)}

{αi(x)}

See e.g. [Bena, Hampton, Houppe, YL, Toulikas ’22]
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Local SUSY enhancement — example
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Microstates of the F1-P black hole

• Harmonic rule:


 black hole with horizon at .→ r = 0
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charges to get a good black hole. But the microscopic entropy for two charges NS1-P
was Smicro = 2π

√
2
√

n1np, which is nonzero.
One might say that the 2-charge case is just not a system that gives a good black hole,

and should be disregarded in our investigation of black holes. But this would be strange,
since on the microscopic side the entropy of the 2-charge system arose in a very similar
way to that for the three charge system; in each case we partitioned among harmonics
the momentum on a string or ‘effective string’. We would therefore like to take a closer
look at the gravity side of the problem for the case of two charges.

We get the metric for NS1-P by setting to zero the Q5 charge in (2.10). With a slight
change of notation we write the metric as (u = t + y, v = t − y)

ds2
string = H [−dudv + Kdv2] +

4
∑

i=1

dxidxi +
4
∑

a=1

dzadza

Buv = −1

2
[H − 1]

e2φ = H

H−1 = 1 +
Q1

r2
, K =

Qp

r2
(4.72)

We will call this metric the naive metric for NS1-P. This is because we will later argue
that this metric is not produced by any configuration of NS1, P charges. It is a solution
of the low energy supergravity equations away from r = 0, but just because we can write
such a solution does not mean that the singularity at r = 0 will be an allowed one in the
full string theory.

What then are the singularities that are allowed? If we start with flat space, then
string theory tells us that excitations around flat space are described by configurations
of various fundamental objects of the theory; in particular, the fundamental string. We
can wrap this string around a circle like the S1 in our compactification. We have also
seen that we can wrap this string n1 times around the S1 forming a bound state. For n1

large this configuration will generate the solution which has only NS1 charge

ds2
string = H [−dudv] +

4
∑

i=1

dxidxi +
4
∑

a=1

dzadza

Buv = −1

2
[H − 1]

e2φ = H

H−1 = 1 +
Q1

r2
(4.73)

This solution is also singular at r = 0, but this is a singularity that we must accept since
the geometry was generated by a source that exists in the theory. One may first take the
limit g → 0 and get the string wrapped n1 times around S1 in flat space. Then we can
increase g to a nonzero value, noting that we can track the state under the change since

18
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• Metric sourced by the string:


 smooth, horizonless solution.→
[Dabhorkar, Gauntlett, Harvey, Waldram ’95]
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it is a BPS state. If n1 is large and we are not too close to r = 0 then (4.73) will be
a good description of the solution corresponding to the bound state of n1 units of NS1
charge.

Now let us ask what happens when we add P charge. We have already seen that
in the bound state NS1-P the momentum P will be carried as traveling waves on the
‘multiwound’ NS1. Here we come to the most critical point of our analysis: There are
no longitudinal vibration modes of the fundamental string NS1. Thus all the momentum
must be carried by transverse vibrations. But this means that the string must bend away
from its central axis in order to carry the momentum, so it will not be confined to the
location r = 0 in the transverse space. We will shortly find the correct solutions for
NS1-P, but we can already see that the solution (4.72) may be incorrect since it requires
the NS1-P source to be at a point r = 0 in the transverse space.

The NS1 string has many strands since it is multiwound. When carrying a generic
traveling wave these strands will separate from each other. We have to find the metric
created by these strands. Consider the bosonic excitations, and for the moment restrict
attention to the 4 that give bending in the noncompact directions xi. The wave carried
by the NS1 is then described by a transverse displacement profile !F (v), where v = t− y.
The metric for a single strand of the string carrying such a wave is known [11]

ds2
string = H [−dudv + Kdv2 + 2Aidxidv] +

4
∑

i=1

dxidxi +
4
∑

a=1

dzadza

Buv = −1

2
[H − 1], Bvi = HAi

e2φ = H

H−1(!x, y, t) = 1 +
Q1

|!x − !F (t − y)|2

K(!x, y, t) =
Q1| !̇F (t − y)|2

|!x − !F (t − y)|2

Ai(!x, y, t) = − Q1Ḟi(t − y)

|!x − !F (t − y)|2
(4.74)

Now suppose that we have many strands of the NS1 string, carrying different vibration
profiles !F (s)(t − y). While the vibration profiles are different, the strands all carry mo-
mentum in the same direction y. In this case the strands are mutually BPS and the
metric of all the strands can be obtained by superposing the harmonic functions arising
in the solutions for the individual strands. Thus we get

ds2
string = H [−dudv + Kdv2 + 2Aidxidv] +

4
∑

i=1

dxidxi +
4
∑

a=1

dzadza

Buv = −1

2
[H − 1], Bvi = HAi
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Microstates of the F1-P black hole

• Harmonic rule:
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no longitudinal vibration modes of the fundamental string NS1. Thus all the momentum
must be carried by transverse vibrations. But this means that the string must bend away
from its central axis in order to carry the momentum, so it will not be confined to the
location r = 0 in the transverse space. We will shortly find the correct solutions for
NS1-P, but we can already see that the solution (4.72) may be incorrect since it requires
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The massive string states accounting for the F1-P black-
hole entropy can be described in supergravity.



2-charge VS 3-charge black holes
• Such « classical » string profiles, through geometric quantization, account for 

the F1-P black-hole entropy:

S = 2π N1NP

[Lunin, Mathur ’01], [Rychkov ’05]
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• 3-charge black holes: singularity and horizon separated.


 in particular D1-D5-P or F1-NS5-P→



1st approach: enhancing D1-D5 through KKM
• D1(y), D5(y1234)  KKM(1234 , y), P( ) dipoles


• The D1-D5 brane system gains a dimension through the KKM

⟶ ψ ψ

Figure 2: The double bubbling of the D1-D5-P system. There are two ways to obtain a super-
stratum: The D1 and P can fuse into a D1-P supertube spiral (red dotted line), and the D5 and P
can fuse into a D5-P spiral (blue continuous line). The spirals can then fuse into a superstratum.
Alternatively the D1-D5 can fuse into a D1-D5-KKM tube (violet straight supertube), which
upon adding momentum can start shaking and become a superstratum.

16 supersymmetries: One applies a second supertube transition that involves adding a KKM
dipole charge and angular momentum. Locally, this is the same as the standard supertube
transition of the D1-D5 system. It is important to remember that this transition decreases the
codimension of the system, and because the D1-D5 common direction shrinks smoothly to zero
at the KKM profile, the resulting configuration is smooth [6, 7]. Hence, the pu↵-up into a
codimension-three object completely resolves the singularity of the D1-D5 system.

To be more specific, let ẑ denote the common direction of the D1 and D5 branes before pu�ng
up and recall that there is, locally, a patch, U , of R4 transverse to the branes (see Fig. 1). The
smooth solution is obtained by introducing a KKM dipole charge along a closed path, �̂, in U and
smearing the D1 and D5 charge along this path. We will parametrize the curve, �̂, by an angle,  ,
so the pu↵ed up brane is a codimension 3 object that sweeps out the (ẑ, )-plane. The resulting
object is now described by the curve, �̂, in U and the three-dimensional transverse geometry in
U in the neighborhood of a point on �̂, appears, at first sight, to be singular. However, it is a
Kaluza-Klein monopole and if the ẑ direction is compactified with the proper periodicity then
the KKM fiber shrinks to zero at a certain profile in R4 in such a way that the resulting geometry
is smooth.

6

D1(y) D5(y)

ψ

y

 « supertube »→
[Emparan, Mateos, Townsend ’01]



1st approach: enhancing D1-D5 through KKM
• D1(y), D5(y1234)  KKM(1234 , y), P( ) dipoles


• The D1-D5 brane system gains a dimension through the KKM


• The (angular) momentum P( ) stabilises the size of the supertube.
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object is now described by the curve, �̂, in U and the three-dimensional transverse geometry in
U in the neighborhood of a point on �̂, appears, at first sight, to be singular. However, it is a
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1st approach: enhancing D1-D5 through KKM
• D1(y), D5(y1234)  KKM(1234 , y), P( ) dipoles


• The D1-D5 brane system gains a dimension through the KKM


• The (angular) momentum P( ) stabilises the size of the supertube.

⟶ ψ ψ

ψ

Figure 2: The double bubbling of the D1-D5-P system. There are two ways to obtain a super-
stratum: The D1 and P can fuse into a D1-P supertube spiral (red dotted line), and the D5 and P
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transition of the D1-D5 system. It is important to remember that this transition decreases the
codimension of the system, and because the D1-D5 common direction shrinks smoothly to zero
at the KKM profile, the resulting configuration is smooth [6, 7]. Hence, the pu↵-up into a
codimension-three object completely resolves the singularity of the D1-D5 system.

To be more specific, let ẑ denote the common direction of the D1 and D5 branes before pu�ng
up and recall that there is, locally, a patch, U , of R4 transverse to the branes (see Fig. 1). The
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• The bound state is globally 
1/4-BPS, but locally 1/2-BPS
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1/4-BPS, but locally 1/2-BPS


• Then add consistently P and 
keep locally 1/2-BPS


 « superstrata »→
[Bena, de Boer, Shigemori, Warner ’11]
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Superstrata and their limits

Fuzzball hypothesis:


Individual black-hole microstates 
differ from themselves and from 
the BH solution at the horizon 
scale.

• In supergravity, superstrata are 
horizonless solutions with same 
charges as the D1-D5-P black hole


• Part of the 

[Bena, Giusto, Martinec, Russo, 

Shigemori, Turton, Warner ’16]



Superstrata and their limits
Drawbacks: 


1. 


2. Have a non-vanishing angular 
momentum in 


 could be atypical

 are not exactly spherically 

symmetric

S ∼ N1N5N1/4
P ≪ N1N5NP

ℝ4

⇒
↑

[Shigemori ’19]

See also [Lin, Maldacena, Rozenberg, Shan ’22]

Fuzzball hypothesis:


Individual black-hole microstates 
differ from themselves and from 
the BH solution at the horizon 
scale.

• In supergravity, superstrata are 
horizonless solutions with same 
charges as the D1-D5-P black hole


• Part of the 

[Bena, Giusto, Martinec, Russo, 
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Outline

1. Local supersymmetry enhancement and black-hole microstates


2. The new M5-M2-P microstates with 16 local supersymmetries



2nd approach: internal dimensions
• For the NS5-F1-P black hole (IIA), we know where the entropy is coming 

from:   little strings / fractionated (M2) branes

A Conventions 68

1 Introduction

1.1 Fivebrane dynamics

The dynamics of coincident fivebranes in string theory is governed by little string the-

ory, a somewhat mysterious non-gravitational, nonlocal theory in six spacetime dimen-
sions [1, 2] (for reviews, see [3, 4]). We understand the outlines of little string theory,
but little more. For instance, it is nonlocal on the scale n5↵

0
⌘ ↵

0

little, where n5 is the
number of fivebranes and ↵

0 is the inverse tension scale of the fundamental (F1) string.
Su�ciently supersymmetric backgrounds exhibit T-duality symmetry. Fivebrane ther-
modynamics at su�ciently high energy density is dominated by a Hagedorn gas of little
strings [5]. Yet much more remains obscure.

The presence of fivebranes fractionates fundamental string charge and tension. One
can see this in the M-theory lift of type IIA, where the fundamental string is an M2-
brane wrapped around the circular 11th dimension. Upon encountering a stack of n5

coincident M5-branes (transverse to the circle), the wrapped membrane can split into
n5 strips stretching between successive M5’s around the circle, see Figure 1. The charge
fractionates, and so does the tension of the e↵ective “W-strings”, providing a heuristic
picture of the origin of the little string’s tension scale.

Figure 1: Open M2-branes stretched between a stack of M5-branes. If the latter are separated

in their transverse space (not depicted here), in the type IIA limit this bound state reduces to

D2-branes stretched between NS5-branes.

When the stack of fivebranes is wrapped around M ⇥ S
1 (where M = T

4 or
K3), su�ciently excited states are are microstates of black holes in the e↵ective five-
dimensional supergravity, whose entropy matches the Hagedorn entropy of the little
string [5],

S = 2⇡
p

NL + 2⇡
p
NR , (1.1)

where NL,R are the excitation levels of the little string.

If one binds n1 strings to n5 fivebranes (i.e. F1-NS5 or D1-D5 bound states), they
will fractionate into little strings in a superselection sector of total little string winding

– 2 –

M5

M2

= T
4y

« Dijkgraaf-Verlinde-Verlinde

-Maldacena microstates »

See e.g. [Martinec, Massai, Turton ’19]

[Dijkgraaf-Verlinde-Verlinde ’96], [Maldacena,’96]
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 reproduce entropy.
T4
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[Dijkgraaf-Verlinde-Verlinde ’96], [Maldacena,’96]
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S = 2π cNP/6 , c = 6N1N5
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• The brane system is point-like in 
the non-compact spatial 
dimensions
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Enhancing the DVVM microstates
• We enhanced the local supersymmetries of the Dijkgraaf-Verlinde-Verlinde-

Maldacena (DVVM) microstates.

[Bena, Hampton, Houppe, YL, Toulikas ‘22]



Enhancing the DVVM microstates
• We enhanced the local supersymmetries of the Dijkgraaf-Verlinde-Verlinde-

Maldacena (DVVM) microstates.


• We found the supersymmetric projector

• preserving the supersymmetries of  NS5(y, ), F1(y), P(y)      (IIA)

• corresponding to an object with 16 local supersymmetries:

T4
In addition, another component of the equations [YL: understand which one] impose

the coe�cients in front of the dipole’s gamma matrices: any pair of dipoles needed to per-
form the supertube transition between two primitive ingredients need to have coe�cients
of same absolute value in the projector equation (3.1):

⇧NS5�F1�P =
1

2


1 + a

2
P

IIA
NS5(y1234) + b

2
PF1(y) + c

2
PP(y)

+ ab
�
PD4(y234) � PD2(y1)

�
+ bc

�
PP(1) � PF1(1)

�
+ ca

�
PD4(1234) � PD0

��
.

(3.3) eq:projector_NS5-F1-P_supertube_final

3.2 The M5-M2-P trinity

See Fig. 1.

Figure 1: Schematic representation of the NS5-F1-P supertube transition. At the nodes
we represent the three primitive ingredients of the NS5-F1-P supertube transition. The
supertube transition between two primitive ingredients is represented by a blue line, and
the ingredients necessary to it are written next to the line. The supertube transition
between the three primitive ingredients involve all the six ingredients needed to glue all
three pairs of the primitive ingredients, and must respect their respective energy distri-
bution, written in red.

hfig:IIA_Trinityi

Thus, one can reorganise the terms in the supertube projector (3.3):

⇧NS5�F1�P =
1

2


1 + a

�
aP
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+ b
�
bPF1(y) � cPF1(1) � aPD2(y1)

�
+ c

�
cPP(y) � aPD0 + bPP(1)

��
. (3.4) eq:projector_NS5-F1-P_supertube_factorized
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where the matrices, P , are given by [28, 29, 30]:

PP = �01
PF1 = �01

�3

P
IIA
NS5 = �012345

P
IIB
NS5 = �012345

�3

P
IIA
KKM(12345;6) = �012345

�3 = �6789
P

IIB
KKM(12345;6) = �012345 = �6789

PD0 = �0
i�2 PD1 = �01

�1

PD2 = �012
�1 PD3 = �0123

i�2

PD4 = �01234
i�2 PD5 = �012345

�1

PD6 = �0123456
�1 (A.2)

From these conditions, one can reverse-engineer the supersymmetry algebra. For example,
one can show that the F1 condition in (A.2) means that we have the following terms on the right
hand side of the Q,Q† anticommutator:

1

2
{Q,Q†} = Pµ�

0µ + ⌧F1Q
F1
µ �0µ

�3 , ⌧F1 =
1

2⇡↵0 , (A.3)

where Q
F1
µ corresponds to the charge of fundamental strings.

One can show this as follows. If we have straight fundamental strings at rest, the supersym-
metry algebra (A.3) becomes

1

2
{Q,Q†} = M + qi�

0i
�3, ⌧F1Q

F1
µ ⌘ (0,q) (A.4)

The charge vector q measures the tension of the fundamental string, including the direction and
multiplicity. Now, assume that the supercharge Q also satisfies:

⇧Q = 0, ⇧ =
1

2

✓
1 +

qi

|q|�
0i
�3

◆
, (A.5)

corresponding to fundamental strings along the direction q
|q| . Equivalently, one has:

⇧0Q = Q, ⇧0 ⌘ 1� ⇧ =
1

2

✓
1� qi

|q|�
0i
�3

◆
. (A.6)

The superchage Q satisfies the following relation:

1

2
{Q,Q†} =

1

2
{⇧0Q, (⇧0Q)†} =

1

2
⇧0{Q,Q†}⇧0

=
1

4

✓
1� qi

|q|�
0i
�3

◆
(M + qi�

0i
�3)

✓
1� qi

|q|�
0i
�3

◆
= (M � |q|)⇧0

, (A.7)

which vanishes for a BPS configuration of mass M = |q|. So, the supercharge, Q, satisfying
(A.6) is preserved in this F1 configuration. As one can see from (A.5), half the eigenvalues of ⇧
are 1 and the other half are 0 and so half the components of Q survive the projection (A.5), and
hence the state satisfying (A.3) is 1

2 -BPS.
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a2 + b2 + c2 = 1



Glueing NS5 and F1

• Put 


• NS5(y, ), F1(y)  local D4(y234), 
D2(y1)
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Glueing NS5 and F1

• Put 


• NS5(y, ), F1(y)  local D4(y234), 
D2(y1)


• Rough angles between M5’s and M2’s 
become smooth:


 new brane system looks like a 
furrow along .
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 This M5-M2 furrow is dual to a 
D4-F1 Callan-Maldacena spike
↑



Glueing NS5 and F1

• The furrow interpolates between M5 
and M2:





 The orientation of a local piece of 
the furrow determines the ratio 
between M5 and M2 charges.

a = cos β , b = sin β
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Transition of a M5-M2 black-hole microstate

• Local transition  a M5-
M2 black-hole microstate 
will transition into a 
« labyrinth/maze » 


 « super-maze »
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Glueing NS5, F1 and P

• The M5-M2 furrow carries 
momentum through 
ripples modulated 
orthogonally to its surface







a = cos α cos β
b = cos α sin β

c = sin α

In addition, another component of the equations [YL: understand which one] impose
the coe�cients in front of the dipole’s gamma matrices: any pair of dipoles needed to per-
form the supertube transition between two primitive ingredients need to have coe�cients
of same absolute value in the projector equation (3.1):

⇧NS5�F1�P =
1

2


1 + a

2
P

IIA
NS5(y1234) + b

2
PF1(y) + c

2
PP(y)

+ ab
�
PD4(y234) � PD2(y1)

�
+ bc

�
PP(1) � PF1(1)

�
+ ca

�
PD4(1234) � PD0

��
.

(3.3) eq:projector_NS5-F1-P_supertube_final

3.2 The M5-M2-P trinity

See Fig. 1.

Figure 1: Schematic representation of the NS5-F1-P supertube transition. At the nodes
we represent the three primitive ingredients of the NS5-F1-P supertube transition. The
supertube transition between two primitive ingredients is represented by a blue line, and
the ingredients necessary to it are written next to the line. The supertube transition
between the three primitive ingredients involve all the six ingredients needed to glue all
three pairs of the primitive ingredients, and must respect their respective energy distri-
bution, written in red.

hfig:IIA_Trinityi

Thus, one can reorganise the terms in the supertube projector (3.3):

⇧NS5�F1�P =
1

2


1 + a

�
aP

IIA
NS5(y1234) + bPD4(y234) + cPD4(1234)

�

+ b
�
bPF1(y) � cPF1(1) � aPD2(y1)

�
+ c

�
cPP(y) � aPD0 + bPP(1)

��
. (3.4) eq:projector_NS5-F1-P_supertube_factorized
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Glueing NS5, F1 and P
• The M5-M2 furrow carries 

momentum through ripples 
modulated orthogonally to 
its surface










•  controls the bending 
angle of the furrow;  
controls the angle of ripples 
orthogonal to the furrow.

a = cos α cos β
b = cos α sin β

c = sin α
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Consequence on a M5-M2-P microstate

• The ripples of the furrow 
correspond to shape modes 
of the M5-M2 labyrinth


• The shape modes are the 
way 16-susy microstates 
carry momentum. 
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Consequence on a M5-M2-P microstate
• The ripples of the furrow 

correspond to shape modes 
of the M5-M2 maze
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Consequence on a M5-M2-P microstate
• The ripples of the furrow 

correspond to shape modes 
of the M5-M2 maze


• The shape modes are the 
way 16-local-susy 
microstates carry 
momentum. 


 The microstates are 
ensured to have exact 
spherical symmetry.
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Horizonless geometries in supergravity?

• Can they described in supergravity?



Horizonless geometries in supergravity?

• Can they described in supergravity?


• In Type IIA, one can only separate the NS5 branes in the non-compact 
spatial dimensions. There exists a region close to the branes where the 
dilaton gets a large value, so supergravity breaks down.

e.g. [Martinec, Massai, Turton ’22]



Horizonless geometries in supergravity?

• Can they described in supergravity?


• In Type IIA, one can only separate the NS5 branes in the non-compact 
spatial dimensions. There exists a region close to the branes where the 
dilaton gets a large value, so supergravity breaks down.


• But in the M2-M5-P frame, the basic ingredient of the super-maze is a M5 
brane with M2 flux on it. The supergravity description of it is valid close to 
the branes as well.

e.g. [Martinec, Massai, Turton ’22]



Conclusion
• Global charges and supersymmetries control the near-horizon geometry.


• Local supersymmetries are a means to get information on the microstates.



Conclusion
• Global charges and supersymmetries control the near-horizon geometry.


• Local supersymmetries are a means to get information on the microstates.


• 1/8-BPS systems (3-charge BHs) have a large moduli space of solutions that 
have more supersymmetries locally


 This is crucial in order to understand whether microstates in string 
theory resolve the singularity or the horizon.
↑



Conclusion

• The microstate geometries programme used to replace D1-D5-
P horizons with brane systems that extend in 


 But this approach seems to have limits: entropy, typicality…

ℝ4

↑

Figure 2: The double bubbling of the D1-D5-P system. There are two ways to obtain a super-
stratum: The D1 and P can fuse into a D1-P supertube spiral (red dotted line), and the D5 and P
can fuse into a D5-P spiral (blue continuous line). The spirals can then fuse into a superstratum.
Alternatively the D1-D5 can fuse into a D1-D5-KKM tube (violet straight supertube), which
upon adding momentum can start shaking and become a superstratum.

16 supersymmetries: One applies a second supertube transition that involves adding a KKM
dipole charge and angular momentum. Locally, this is the same as the standard supertube
transition of the D1-D5 system. It is important to remember that this transition decreases the
codimension of the system, and because the D1-D5 common direction shrinks smoothly to zero
at the KKM profile, the resulting configuration is smooth [6, 7]. Hence, the pu↵-up into a
codimension-three object completely resolves the singularity of the D1-D5 system.

To be more specific, let ẑ denote the common direction of the D1 and D5 branes before pu�ng
up and recall that there is, locally, a patch, U , of R4 transverse to the branes (see Fig. 1). The
smooth solution is obtained by introducing a KKM dipole charge along a closed path, �̂, in U and
smearing the D1 and D5 charge along this path. We will parametrize the curve, �̂, by an angle,  ,
so the pu↵ed up brane is a codimension 3 object that sweeps out the (ẑ, )-plane. The resulting
object is now described by the curve, �̂, in U and the three-dimensional transverse geometry in
U in the neighborhood of a point on �̂, appears, at first sight, to be singular. However, it is a
Kaluza-Klein monopole and if the ẑ direction is compactified with the proper periodicity then
the KKM fiber shrinks to zero at a certain profile in R4 in such a way that the resulting geometry
is smooth.

6

• Global charges and supersymmetries control the near-horizon geometry.


• Local supersymmetries are a means to get information on the microstates.


• 1/8-BPS systems (3-charge BHs) have a large moduli space of solutions that 
have more supersymmetries locally


 This is crucial in order to understand whether microstates in string 
theory resolve the singularity or the horizon.
↑
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Conclusion
• New approach: microstates can carry momentum by having 

motion in the internal dimensions  exactly spherical 
symmetry


• The DVVM microstates account for the black-hole entropy…

… and we have identified what they become when the branes 
start interacting.


• These « super-mazes » have 16 local susys, just like the 
superstrata, but without having their drawbacks.
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Outlook
• 16 local susys is a smoking gun for horizonless microstate 

solutions
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Outlook
• 16 local susys is a smoking gun for horizonless microstate 

solutions

 seems to support Fuzzball hypothesis for M2-M5-P black-

hole microstates

 Construct the fully backreacted supergravity solutions

 Apply geometric quantization to them.
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Outlook
• 16 local susys is a smoking gun for horizonless microstate 

solutions

 seems to support Fuzzball hypothesis for M2-M5-P black-

hole microstates

 Construct the fully backreacted supergravity solutions

 Apply geometric quantization to them.


• End goal: 


« Where » is the information about the black-hole microstate?
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Back-up slide

M2

M5

M5

M2

M5

M5

M5
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Figure 2: The fractionation of M2 branes into strips and the super-maze: Before the
fractionation (left panel) the M2 brane does not interact with the M5 branes, and can
be freely taken away. After the fractionation, each strip of the M2 branes can move
independently, giving the näıve configuration in the middle panel. However, the M2
strips pull on the M5 brane, creating the super-maze depicted in the right panel.

matches, as expected, the dimension of the moduli space of the D1-D5 (F1-NS5) system
deformations that preserve rotational invariance in the transverse space [51–53]

The second step in our endeavour is to add momentum to the super-maze, in order
to construct a brane bound-state configuration that has 16 supercharges locally and that
carries the charges of a black hole with a macroscopically-large event horizon. To do this,
we will first construct the two-charge bound states formed by M2 branes and momentum,
and by M5 branes and momentum. The former is the M-theory uplift of the F1-P system,
whose solutions have been described in supergravity in [54]. The momentum is carried
by the transverse oscillations of the M2 branes and, if one zooms in near a piece of
the momentum-carrying M2 brane one finds that the supersymmetry is enhanced to 16
supercharges.

Similarly, the M5 branes can carry momentum by transverse fluctuations, that we can
restrict to be oriented only along the M-theory direction, so that the resulting solution is
spherically symmetric in the non-compact spacetime directions. This system is the uplift
of the NS5-P-D0-D4 solution found in [55]. This solution also preserves 8 supersymmetries,
but locally the supersymmetry is enhanced to 16. For both the M2-P and the M5-P
system, this is ensured by the presence of dipolar charges, which can be thought of as
the “glue” needed to construct the bound states of two-charge system. Of course, for the
M5-P system one can consider other types of glue, coming for example from 2 species
of M2 branes inside the M5-brane worldvolume. The resulting configuration is called a
magnetube, and its supergravity solution was constructed in [56,57].

The main result of this paper is to identify the ingredients needed to construct the
bound states of the NS5-F1-P Type IIA system and of its M-theory M2-M5-P uplift.
These bound states describe the DVV little strings carrying momentum in the regime
of parameters where the brane interactions are taken into account. We show that there
exists a supersymmetry projector corresponding to a brane configuration that has 16-
supersymmetries locally and 4 globally, and which describes the zooming in on a piece of

5

x1

z

M2

M5

M5

M2

M2

M2
M5-M2

bound state

M5-M2
bound state

M5-M2
bound state

M5-M2
bound state

2 M5

M2

M2

Figure 7: A super-maze made of 2 M5 branes and a single M2 brane which is smeared along
three of the M5 brane worldvolume directions. Before the fractionation the M2 brane does
not pull on the M5 branes, and can be freely taken away. After the fractionation (middle
panel), each strip of the M2 branes deforms the M5 brane in its vicinity. As the branes
move, the web depicted in the middle panel can also transform in the web depicted in the
right panel, which has regions of coincident un-fluxed M5 branes.

while we expect
p

5/6 of the black hole entropy to come from configurations that do not
break this symmetry [53].12

The super-maze promises to solve both these problems at the same time. On one
hand, we have constructed the super-maze using the types of “glue” that preserve the
rotational invariance of the black hole. Furthermore, the DVV microstates that we have
argued to backreact into super-maze configuration correspond to momentum carriers that
are purely bosonic. Hence, we expect the super-maze and its corresponding supergravity

solutions to have an entropy of order 2⇡
q

4
6N1N5NP . Furthermore, since two of the

fermionic zero modes also preserve the rotational symmetry of the black-hole horizon,
and the super-maze is the most general brane bound state with black-hole charges that
preserves this symmetry, it is possible that the super-maze could even have an entropy of

order 2⇡
q

5
6N1N5NP .

Our construction also allows us to speculate how we may try to capture the remaining
part of the black-hole entropy, which comes from fermion momentum carriers that break
the rotational symmetry of the black-hole horizon [53]: Instead of using the super-maze
glue, we could could try to use the other types of glue, and construct generalizations of
the super-maze that break this rotational symmetry.

It would be very interesting to construct the fully backreacted super-maze solutions,
and to understand how this entropy is realized in supergravity. It would be also interesting
to apply the “making bound states with glue” philosophy we used in this paper to reveal
the microscopic structure of black holes in other duality frames, where microstate counting
has not been done.

12For other extremal black holes there are arguments that most of the entropy comes from such mi-
crostates [69].
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