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What this talk is about

e M5-M2(-P) black hole: The microstates
M2 that are made of fractionated M2
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What this talk is about

M2

M5

« Dijkgraaf-Verlinde-Verlinde
-Maldacena microstates »

e M5-M2(-P) black hole: The microstates
that are made of fractionated M2
branes account for the entropy.

e \We found: They can transition into
microstates with 16 local
supersymmetries.

Microstates with 16 local susys
account for the black-hole entropy!

e \We expect their backreaction to be
horizonless microstates.
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1. Local supersymmetry enhancement and black-hole microstates

2. The new M5-M2-P microstates with 16 local supersymmetries
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The 3-charge black hole and near-horizon geometry

o Type lIA/IIB: R*»' xS} x T*
e Take brane system with 3 charges:

D5(y, T*), D1(y), P(y)
or NS5(y, T%), F1(y), P(y)

= naively, 1/8-BPS everywhere



The 3-charge black hole and near-horizon geometry

o Type lIA/IIB: R*»' xS} x T*

e Take brane system with 3 charges:

2
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The 3-charge black hole and near-horizon geometry

o Type lIA/IIB: R*»' xS} x T*

e Take brane system with 3 charges: , Global charges and '
D5(y, T4, D1 (y), P(y) | supersymmetries seem to control
or NS5(y, T4), F1(y), P(y) , near-horizon geometry.

| Therefore all brane systems

= naively, 1/8-BPS everywhere |
| develop the same horizon:

Use harmonic function rule | To have access the information

= develops horizon in about the microstates, probe
supergravity | singularity region, where |
| supergravity breaks down. |



The 3-charge black hole and near-horizon geometry

o Type lIA/IIB: R*»' xS} x T*
e Take brane system with 3 charges:

D5(y, T*), D1(y), P(y)
or NS5(y, T%), F1(y), P(y)

® [ocal supersymmetry '
. enhancement: ¢

String-theory excitations (branes, ,

= naively, 1/8-BPS everywhere strings) combine together to |
form a bound state thatis locally |

% 1/2-BPS (716 susies).

e Use harmonic function rule

= develops horizon in
supergravity



Local SUSY enhancement — example

e Ex.: F1(y) and parallel P(y):

F1(4)

e Flor P preserve 16 real supercharges

e Together, F1-P preserve 8



Local SUSY enhancement — example

e Actually the string can carry

e Ex.: F1(y) and parallel P(y): momentumynﬁfe

e The F1-P profile preserves the
F1 (4) FA=-P(4,2")

same global supersymmetries...
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Local SUSY enhancement — example

e Actually the string can carry

e Ex.: F1(y) and parallel P(y): momentumynﬁfe

e The F1-P profile preserves the
F1 (4) FA-P(4,3")

same global supersymmetries...

) e ...butlocallyitisaF1(y)

boosted by orthogonal P(7)

% L ¢ e F1(9)-P(3+) preserves 16
; supercharges

e Flor P preserve 16 real supercharges Local supersymmetry

e Together, F1-P preserve 8 — information on microstate?




Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]
e Branes, strings — constraint on €:

1
H655(1+P)€=() \

/ \ Killing spinor

Projector Traceless involution
12 =11 P2 — 1
Constraint halves number
tr(P) =0 -

of supersymmetries



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]
e Branes, strings — constraint on €:

|

e Combine k different excitations:
e € ker(1l)) n... nker(1l;)

— f (global supersymmetries)



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

1

e Branes, stringis — constraint on €: . e = 5 (1 + P+ ... + anPn) c
I1e 55(1 +P)e=0
e Combine k different excitations: /
e € ker(1l}) N ... Nnker(I1)) Mix ot excitations (branes, etc)
— # (global supersymmetries) with different charges:
e Add otherinvolutions (P4, ..., P,) a; = %

and weights (a;, ..., a,) s.t.



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

® Branes, strings — constraint on e: . Jle= l (1 + P+ ...+ aP ) c
1 > P,
He=—(1+P)e=0 ’

e Combine k different excitations: /

e € ker(1l}) N ... Nnker(I1)) Mix ot excitations (branes, etc)
— # (global supersymmetries) with different charges:
e Add otherinvolutions (P4, ..., P,) a; = %
and weights (a;, ..., a,) s.t.

Not necessarily a projector!



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

A 1
o HGE—<1+C¥1P1+...+C¥nPn)€

1 2
2 e [I- =II iff the system has 16 susies.

e Branes, strings — constraint on €:

e Combine k different excitations:
e € ker(11)) n ... nker(I1;)

| One can enhance
— 1 (global supersymmetries)

supersymmetries

e Add other involutions (P4, ..., P,)

n

and weights (a;, ..., a,) s.t.



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

A 1
o HGEE<1+6¥1P1+...+C¥nPn)€

o 112 = I1iff the system has 16 susies.

e Branes, strings — constraint on €:

1
e Combine k different excitations: e {a} notunique — {a: (x))
€ € ker(Hl) N...N ker(Hk) ﬁ(X) e(x) =0

— # (global supersymmetries)

e Add other involutions (P4, ..., P,)

" along the bound state

and weights (a;, ..., a,) s.t.

a+...+a,=1 e promoted to be a function



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

A 1
o HGEE<1+6¥1P1+...+C¥nPn)€

o 112 = I1iff the system has 16 susies.

e Branes, strings — constraint on €:

|

e Combine k different excitations: e {a;} notunique - {a;(x)}

e € ker(1l)) n... nker(1l;) fl(x) e(x) = 0
— # (global supersymmetries) At x, e(x) € ker(fI(x)) —» local
e Add other involutions (P, 4, ..., P,) supersymmetry
and weights (a4, ..., a,) s.t. e While for global supersymmetry:
a+...+a,=1 eeﬂker<f[(x)).

1 (global susies) < # (local susies)



Local VS global supersymmetries

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

A 1
o HGEE<1+C¥1P1+...+C¥nPn)€

o 112 = I1iff the system has 16 susies.

e Branes, strings — constraint on €:

|

e Combine k different excitations: e {a;} notunique - {a;(x)}

e € ker(1l)) n... nker(1l;) fl(x) e(x) = 0
— # (global supersymmetries) At x, e(x) € ker(fI(x)) — local
supersymmetry
Local supersymmetry e While for global supersymmetry:
enhancement e ﬂ ker (f[(x)).

\ﬁ

(global susies) < #f (local susies)



Local supersymmetry enhancement

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

Local supersymmetry enhancement:

Given a set of global supersymmetries, there sometimes
exists a whole moduli space of brane/string systemes,

parameterised by {a.(x)}, preserving those same global
supersymmetries, but whose number of local

supersymmetries is enhanced.
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Local supersymmetry enhancement

See e.g.[Bena, Hampton, Houppe, YL, Toulikas '22]

Local supersymmetry enhancement:

Given a set of global supersymmetries, there sometimes
exists a whole moduli space of brane/string systemes,

parameterised by {a(x)}, preserving those same global
supersymmetries, but whose number of local

supersymmetries is enhanced.

— identify the additional excitations (« glues ») to make a
bound state

i — determine the charge-to-mass ratios {a(x)}. i



Local SUSY enhancement — example

F1 (4) FA-P(4,3")

%La

8

I
o Hpy = SU+Prg), P Fiy) = 103 1

o |l = 5 (1 + 0‘1PF1(y) + 0‘2PP(y) “BPFI(I) T 0‘4PP(1)>

1
_ _ 10



Local SUSY enhancement — example

F1 (4) FA-P(4,3")

Y .
L
Step O

1
_ 10
o Hpy = S0+ Pr) Prg =T 03 o
o [ =— (1 + (XIPFl(y) + OCZPP(y) 063PF1(1) + (X4PP(1)>

1 2
— — 10
o lpy) = 5(1 T PP(y))' Ppy =T ’ //

defining the global

supersymmetries



Local SUSY enhancement — example

F1(4) FA-P(4,2")

%La

0
i Step 1
o lUpy = 5(1 +PF1(y))l Priy) = Foy(%
1 1 + a1 Pgy(y) + 0Ppy) + 03 Ppy(1) + 0‘4PP(1)>
_ _ 10
o o) = S+ Pey) Py =17 // \ /

defining the global « glues »,
supersymmetries dipoles



Local SUSY enhancement — example

F1 (4) FA-P(4,3")

%La

s
1 Step 2
B _ 10
o || =— (1 + (XIPFl(y) + azpp(y) a3PF1(1) + (X‘TI-PP(D>

1
— — 10
= S+ Pey) Prgy =17 / /

) . .
COS™ sin? a cosa sin

|
—Ccosasina



Local SUSY enhancement — example

F1 (4) FA-P(4,3")

s
1 Step 2
B _ 10
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1
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Microstates of the F1-P black hole

F1(4)

e Harmonic rule:

4 4
ds%ping = Hl—dudv+ Kdv’] +  dridz; + Y  dz.dz,
=1 =1

— black hole with horizon at r = 0.



Microstates of the F1-P black hole

F1 (4) FA-P(4,3")

%La

?
e Harmonic rule: * Metric sourced by the string:
4 4 4 4
ds2ping = Hl—dudv+ Kdv®| + Y  dudaz; + Y dzedza  dshy,,, = H[~dudv+ Kdv? +2Aidzidv] + Y duidz; + Y dzadz,
i=1 a=1 =1 a=1

[Dabhorkar, Gauntlett, Harvey, Waldram "95]

— black hole with horizon at r = 0. — smooth, horizonless solution.



Microstates of the F1-P black hole

The massive string states accounting for the F1-P black-
hole entropy can be described in supergravity.

e Harmonic rule: * Metric sourced by the string:
4 4 4 4
ds2ping = Hl—dudv+ Kdv®| + Y  dudaz; + Y dzedza  dshy,,, = H[~dudv+ Kdv? +2Aidzidv] + Y duidz; + Y dzadz,
i=1 a=1 =1 a=1

[Dabhorkar, Gauntlett, Harvey, Waldram "95]

— black hole with horizon at r = 0. — smooth, horizonless solution.



2-charge VS 3-charge black holes

e Such « classical » string profiles, through geometric quantization, account for
the F1-P black-hole entropy: [Lunin, Mathur ‘01], [Rychkov ‘05]

S = 2av/N{Np
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e However: 2-charge black holes: singularity, horizon at r = 0.

— |s the stringy structure resolving the horizon or the singularity?




2-charge VS 3-charge black holes

e Such « classical » string profiles, through geometric quantization, account for
the F1-P black-hole entropy: [Lunin, Mathur ‘01], [Rychkov ‘05]

S = 2av/N{Np

e However: 2-charge black holes: singularity, horizon at r = 0.

— |s the stringy structure resolving the horizon or the singularity?

e 3-charge black holes: singularity and horizon separated.

— in particular D1-D5-P or F1-NS5-P



1st approach: enhancing D1-D5 through KKM

e D1(y), D5(y1234) — KKM(1234 v, y), P(y) dipoles
e The D1-D5 brane system gains a dimension through the KKM

— « supertube »

[Emparan, Mateos, Townsend '01]

D1(y) ] D5(y)

<V



1st approach: enhancing D1-D5 through KKM

e D1(y), D5(y1234) — KKM(1234 v, y), P(y) dipoles
e The D1-D5 brane system gains a dimension through the KKM

e The (angular) momentum P(y) stabilises the size of the supertube.

D1(y) D5(y) — replace the delta-

function brane singularity
by a source extended in the
non-compact dimensions

<V



1st approach: enhancing D1-D5 through KKM

e D1(y), D5(y1234) — KKM(1234 v, y), P(y) dipoles
e The D1-D5 brane system gains a dimension through the KKM

e The (angular) momentum P(y) stabilises the size of the supertube.

* The bound state is globally
D1(y) 1 D5(y) 1/4-BPS, but locally 1/2-BPS
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1st approach: enhancing D1-D5 through KKM

e D1(y), D5(y1234) — KKM(1234 v, y), P(y) dipoles
e The D1-D5 brane system gains a dimension through the KKM

e The (angular) momentum P(y) stabilises the size of the supertube.

e The bound state is globally
D1(y) 1 D5(y) 1/4-BPS, but locally 1/2-BPS

* Then add consistently P and
keep locally 1/2-BPS

— « superstrata »

[Bena, de Boer, Shigemori, Warner "11]

[Bena, Giusto, Martinec, Russo,

<V

Shigemori, Turton, Warner '16]



Superstrata and their limits

* |n supergravity, superstrata are

horizonless solutions with same
charges as the D1-D5-P black hole

[Bena, Giusto, Martinec, Russo,
Shigemori, Turton, Warner '16]

e Part of the

Individual black-hole microstates

| differ from themselves and from

| the BH solution at the horizon |
scale.



Superstrata and their limits

* |[n supergravity, superstrata are Drawbacks:
horizonless solutions with same 1/4
1. § ~/N\N:N;* < /N;NsN
charges as the D1-D5-P black hole rerp R
[Bena, Giusto, Martinec, Russo, [Shigemori "19]

Shigemori, Turton, Warner '16]

e Part of the
2. Have a non-vanishing angular

4

momentum In |

Individual black-hole microstates = could be atypical

differ from themselves and from 1 are not exactly spherically

the BH solution at the horizon

| | symmetric
scale.

See also [Lin, Maldacena, Rozenberg, Shan '22]



Outline

1. Local supersymmetry enhancement and black-hole microstates

2. The new M5-M2-P microstates with 16 local supersymmetries



2nd approach: internal dimensions

 Forthe NS5-F1-P black hole (lIA), we know where the entropy is coming
from: Little skrings / fractionated (M2) branes

See e.g. [Martinec, Massai, Turton "19]

E—
“"‘

« Dijkgraaf-Verlinde-Verlinde
-Maldacena microstates »
[Dijkgraat-Verlinde-Verlinde '96], [Maldacena,' 6]



2nd approach: internal dimensions

e Forthe NS5-F1-P black hole (ll1A), we know where the entropy is coming
from: Little skrings / fractionated (M2) branes

See e.g. [Martinec, Massai, Turton "19]
M2

e The momentum is carried by the
fractionated M2's through their

motion in the T

— reproduce entropy.
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2nd approach: internal dimensions

e Forthe NS5-F1-P black hole (ll1A), we know where the entropy is coming
from: Little skrings / fractionated (M2) branes

See e.g. [Martinec, Massai, Turton "19]

M2
e The momentum is carried by the
fractionated M2's through their
X11
motion in the T*
— reproduce entropy.
M5

S =2m/cNpl6, ¢ = 6NNs;
« Dijkgraat-Verlinde-Verlinde

-Maldacena microstates »
[Dijkgraat-Verlinde-Verlinde '96], [Maldacena,' 6]



2nd approach: internal dimensions

e Forthe NS5-F1-P black hole (ll1A), we know where the entropy is coming
from: Little skrings / fractionated (M2) branes

See e.g. [Martinec, Massai, Turton "19]
M2

e The momentum is carried by the
fractionated M2's through their

motion in the T

— reproduce entropy.

vs @ The brane system is point-like in
the non-compact spatial

« Dijkgraat-Verlinde-Verlinde

| dimensions
-Maldacena microstates »

[Dijkgraat-Verlinde-Verlinde '96], [Maldacena,' 6] — exact Sphenca/ Symmetry.



Enhancing the DVVM microstates

[Bena, Hampton, Houppe, YL, Toulikas '22]

e \We enhanced the local supersymmetries of the Dijkgraat-Verlinde-Verlinde-
Maldacena (DVVM) microstates.



Enhancing the DVVM microstates

[Bena, Hampton, Houppe, YL, Toulikas '22]

e \We enhanced the local supersymmetries of the Dijkgraat-Verlinde-Verlinde-
Maldacena (DVVM) microstates.

e \We found the supersymmetric projector

e preserving the supersymmetries of NS5(y, T4), F1(y), P(y)  (lIA)

e corresponding to an object with 16 local supersymmetries:

T
lNnss—pi—p = 5 1+ @zplilsl%(ym?)zl) T bQPFl(y) + CQPP(y)

+ ab (PD4(y234) — PDQ(yl)) + be (PP(l) — PF1(1)) - CQ (PD4(1234) — PDO) -



First look at the projector
1

lnss—Fri—p = 5 1+ CLQPl{IIéAES(leSAL) T bQPFl(y) T CQPP(y)

T _
+ ab (Ppagy2s1) — Phag)) + be (Peay — Priny) + ca (Ppagizsa) — Poo) | -

Excitations defining the global
supersymmetries




First look at the projector
1

lnss—Fri—p = 5 1+ CLQPl{IIéAES(leSAL) T bQPFl(y) T CQPP(y)

+ ab (PD4(y234) — PDQ(yl)) + be (PP(l) — PFl(l)) - CQ (PD4(1234) — PDO) :

Excitations corresponding to the
glues




First look at the projector

1 A
lnss—Fri—p = 5 1+ a2P1£IIS5(y1234) T bQPFl(y) T CQPP(y)
+ ab (Ppayass) — Ppag1)) + be (Peay — Priy) + ca (Ppagisa) — Poo)
Pp =T Ppy =T 03
Pl{IIéA L F012345 P1§ISB5 L F012345O_3
L — —
BPS condition: PI%%M(12345;6) _ [012345  _ 76789 PII{II]?M(12345;6) _ 012345 __ 16789
Ppo = IMio Ppy =10
o) o) o DO 2 D1 1
a + b + € = 1 PD2 — F0120'1 PDg — F0123i0'2
PD4 _ F01234i0_2 PDS _ F0123450_1

PD6 _ F0123456O_1



Glueing NS5 and F1

T
lnss—Fri—p = 5 1+ a2P1£IISA5(y1234) T bQPFl(y) T CQPP(y)

+ ab (PD4(y234) — PDz(y1)) + be (PP(l) — PF1(1)) -+ ca (PD4(1234) — PDO) -

e Putc =0

e NS5(y, 7%), F1(y) — local D4(y234),
D2(y1)




Glueing NS5 and F1

T
lnss—Fri—p = 5 1+ @2P1§I§A5(y1234) T bQPFl(y) T CQPP(y)

+ ab (Ppagyss) — Poa)) + be (Peay — Priy) + ca (Ppaqaassy — Poo) | -

MS(’“&'411‘+)

/ //// [/

e NS5(y, T%), F1(y) — local D4(y234), // //}/ / /
D2(y1) « ///

MLy 1)

Vo

3

e Putc =0




Glueing NS5 and F1

T
lnss—Fri—p = 5 1+ CLQPl{IIg%(leSKL) T bQPFl(y) T CZPP(y)
+ ab (PD4(y234) — PDz(y1)) + be (PP(l) — PFl(l)) T Ca (PD4(1234) — PDO) -
e Putc =0 Sl
D2(y1)

e RoucH ANGLES between M5's and M2's TL){
become smooth:

— new brane system looks like a
furrow along y.




Glueing NS5 and F1

T
lnss—Fri—p = 5 1+ CLQPl{IIg%(leSKL) T bQPFl(y) T CZPP(y)
+ ab (PD4(y234) — PDz(y1)) + be (PP(l) — PFl(l)) T Ca (PD4(1234) — PDO) -
e Putc =0 Sl
D2(y1)

e RoucH ANGLES between M5's and M2's TL){
become smooth:

— new brane system looks like a T This M5-M2 furrow is dual to a

furrow along y. D4-F1 Callan-Maldacena spike



Glueing NS5 and F1

T
lnss—Fri—p = 5 1+ a2P1£IISA5(y1234) T bQPFl(y) T CZPP(y)

+ ab (PD4(y234) — PDQ(yl)) + be (PP(l) — PFl(l)) T Ca (PD4(1234) — PDO) -

* The furrow interpolates between M5
and M2:

a=cosff, b=smp

MS (4 A13%) (M5 -M2) (4,47, ")

= The orientation of a local piece of  «

the furrow determines the ratio

between M5 and M2 charges.



Transition of a M5-M2 black-hole microstate

M2 M2

M5 MgﬂJL@ JL

e | ocal transition = a M5-
M2 black-hole microstate

will transition into a

« labyrinth/maze »

— « super-maze »

« M5-M2 furrow »



Glueing NS5, F1 and P

lnss—Fri—p = 5 1+ @2P1§I§}5(y1234) T bQPFl(y) T CQPP(y)

+ ab (Ppayass) — Ppag1)) + be (Peay — Priy) + ca (Ppagisa) — Poo)

e The M5-M2 furrow carries " (4

momentum through (M5 -H2) (4,57, =) (M5 -#2-p) (3, 5, <)

mjo]ofes modulated

orthogonally to its surface

a = COS a COS [}

b = cos a sin f Vo

c=SIna




Glueing NS5, F1 and P

e The M5-M2 furrow carries
momentum through ripples

modulated orthogonally to

Its surface

a = Ccosacosp
b = cosasinf

c=SIna

e [f controls the bending

angle of the furrow; a

controls the angle of ripples

orthogonal to the tfurrow.




Consequence on a M5-M2-P microstate
MHJL? i LT

correspond to shape modes = — /5 —s s
of the M5-M2 labyrinth

T,

J)

e The m’}oy[es of the furrow

2

e The sﬁajoe modes are the

way 16-susy microstates
carry momentum.

« M5-M2 furrow »



Consequence on a M5-M2-P microstate

'Themjo]ofesofthefurrow s ,JL . JIL s b ,jil@, : st
correspond to shape modes 7 S I 1 G
of the M5-M2 maze d - \ L b

« M5-M2 furrow »



Consequence on a M5-M2-P microstate

° Them’}oy[esofthefurrow s ,JL 7 JIL Ms b ,:H e st

correspond to shape modes
of the M5-M2 maze

MS N[ .

e The sﬁaye modes are the

way 16-local-susy
microstates carry
momentum.

= The microstates are

ensured to have exact

spherical symmetry.

« M5-M2 furrow »
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Horizonless geometries in supergravity?

e Can they described in supergravity?

* In Type lIA, one can only separate the NS5 branes in the non-compact
spatial dimensions. There exists a region close to the branes where the

dilaton gets a large value, so supergravity breaks down.
e.g. [Martinec, Massai, Turton '22]

e Butinthe M2-M5-P frame, the basic ingredient of the super-maze is a M5
brane with M2 flux on it. The supergravity description of it is valid close to
the branes as well.
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Conclusion

 Global charges and supersymmetries control the near-horizon geometry.

* | ocal supersymmetries are a means to get information on the microstates.

e 1/8-BPS systems (3-charge BHs) have a large moduli space of solutions that
have more supersymmetries locally

T This is crucial in order to understand whether microstates in string
theory resolve the singularity or the horizon.

* The microstate geometries programme used to replace D1-D5-
4

P horizons with brane systems that extend in |

1 But this approach seems to have limits: entropy, typicality...
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Conclusion

e New approach: microstates can carry momentum by having
motion in the internal dimensions = exactly spherical
symmetry

e The DVVM microstates account for the black-hole entropy...

... and we have identitied what they become when the branes
start interacting.

* These « super-mazes » have 16 local susys, just like the
superstrata, but without having their drawbacks.
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hole microstates
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T Apply geometric quantization to them.



Outlook

e 16 local susys is a smoking gun for horizonless microstate
solutions

= seems to support Fuzzball hypothesis for M2-M5-P black-

hole microstates
1 Construct the fully backreacted supergravity solutions

T Apply geometric quantization to them.

 End goal:

« Where » is the information about the black-hole microstate?
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