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Symmetries in Quantum Field Theory I

• Symmetries first appear in the form of unitary operators U(Σt), acting on the
Hilbert space and on operators:

U(Σt) |ψ⟩ = |ψ′⟩, U(Σt)OU(Σt)
−1 = O′

U(Σt)

|ψ⟩ ∈ H

U(Σt)

U(Σt)
−1

O

In a Lorentzian or Euclidean QFT there is no canonical choice of time
direction: Σt can be tilted.

• Also, for continuous symmetries

U(Σt) = exp(2πi αQ), Q =

∫
Σt

∗j, d ∗ j = 0,

so path integral is invariant under (small enough) deformations of Σt. This
motivates to consider operators with supports on arbitrary submanifolds:
U(Σd−1).
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Symmetries in Quantum Field Theory II

Symmetries correspond to topological defects.

[Gaiotto, Kapustin, Seiberg, Willett ’14]

• Conventional symmetries a topological defects of co-dimension one.
• Charged operators are local operators, and charged objects are particles.

U(Σd−1)

O O′

• An immediate generalization: consider topological defects of higher
co-dimension −→ higher-form symmetries.

• Charged operators are lines, surfaces etc., charged objects are strings and
branes.

L

V(Σd−2)

L′
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Symmetries in Quantum Field Theories III

Symmetries correspond to topological defects.

[Gaiotto, Kapustin, Seiberg, Willett ’14]

• Conventional symmetries are associated with groups, and fuse according to
the group law.

Ug1 Ug2 Ug1g2

• However, more general fusion rules, with several operators on the r.h.s., are
possible. Examples are lines in Non-Abelian Chern-Simons theories and line
operators in the 2d RCFTs.

σ σ I ϵ

Example from the

2d Ising model.

• Defects, fusing not according to the group law, are reffered to as
non-invertible (or categorical) symmetries.
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Non-invertible symmetries in four dimensions from a mixed anomaly I

[Kaidi, Ohmori, Zheng ’21]

• Consider a theory T with a 0-form symmetry and a 1-form symmetry, e.g.

Z(0)
2 and Z(1)

2 . The corresponding background fields are A(1) and B(2). Let us
also assume that there is the mixed ’t Hooft anomaly, encoded in the 5d
anomaly theory

SAnomaly = πi

∫
X5

A(1) ∪
P(B(2))

2
, M4 = ∂X5

• Let also D(M3, B(2)) be the defect, corresponding to Z(0)
2 . Due to the

anomaly it is not invariant under the B(2) gauge transformations, the
combination which is invariant is given by

D(M3, B
(2))e

πi
∫
X4

P(B(2))/2
, M3 = ∂X4

• We now turn to the theory T /Z(1)
2 with gauged 1-form symmetry, promoting

B(2) into a dynamical field b(2). D now happens to be a non-genuine defect,
since it depends on the values of dynamicsl fields outside of its support.
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Non-invertible symmetries in four dimensions from a mixed anomaly II
[Kaidi, Ohmori, Zheng ’21]

NS = DA(2,1)

eπi
∫

P(b(2))/2−πi
∫

P(b(2))/2 = 1

• Nevertheless, the defect D′(M3, b(2)) can be turned into a genuine defect by
coupling it to the 3d TQFT A(2,1)(M3, b(2)) [Hsin, Lam, Seiberg ’18]

NS(M3, b
(2)) = D(M3, b

(2))A(2,1)(M3, b
(2))

A(2,1)(M3, b
(2)) = e

i
2π

∫
M3

−xdx+2xdy+2b(2)y

• While in the original theory T we had

D ×D = 1,

in the gauged theory T /Z(1)
2 the corresponding fusion rule reads

NS ×NS =
1

|H0(M3,Z2)|
∑

Σ∈H2(M3,Z2)

(−1)Q(Σ)L(Σ) ≡ C(1)(M3),

where L(Σ) := eiπ
∫
Σ b(2) and Q(Σ) is the triple intersection number of Σ in

M3.
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Non-invertible symmetries in four dimensions from a mixed anomaly III

• To summarize, while we managed to construct the genuine gauge-invariant
defect NS , it turns out to be non-invertible.

• The right hand side of the fusion rule

C(j)(M3) ≡
1

|H0((M3, ),Z2)|
∑

Σ∈H2(M3,Z2)

(−1)jQ(Σ)L(Σ)

is known as a condensate, and provides an example of higher gauging.
[Roumpedakis, Seifnashri, Shao ’22]

• Examples of this setup include: SO(3) YM at θ = π (0-form symmetry is the
time-reversal symmetry), SO(3) N = 1 SYM (0-form symmetry is the
R-symmetry), SO(3)− N = 4 SYM at τ = i (0-form symmetry is the
S-self-duality).

• The setup can be extended to other types of ABJ anomalies.
[Choi, Lam, Shao ’22]

• The type of non-invertible defects considered above was dubbed
non-intrinsically non-invertible defects, since one can choose the global form
where all the symmetries are invertible. [Kaidi, Zafrir, Zheng ’22].
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Non-invertible symmetries in four dimensions from a duality

[Choi, Cordova, Hsin, Lam, Shao ’21]

• Non-invertible symmetry from invariance under the gauging of a 1-form
symmetry.

T ≃ T /G(1)

gauging S

SU(2)[τ] SO(3)+[τ] SU(2)[− 1
τ

]

NS

SU(2)[τ] SU(2)[− 1
τ

]

• The fusion rule is given by

NS ×NS = C(0)(M3)

• Examples include 4d Maxwell theory at rational τ and N = 4 SYM at τ = i
with certain gauge groups and global forms. More examples follow.
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Global forms of su(p) N = 4 Super-Yang-Mills I

• We are going to consider SU(N) theories with N = p prime.

• Having specified the gauge algebra su(p), we still have to make a choice of a
global form, which is equivalent to choosing a point in the charge lattice:
(e,m) ∈ Zp × Zp. [Aharony, Seiberg, Tachikawa ’13]

• Other charges are then required to satisfy the Dirac quantization condition:

em′ − e′m = 0 mod p (1)

SU(2) SO(3)+ SO(3)−

• There are p+ 1 global forms (SU(p) and PSU(p)(k), k = 0, ..., p− 1).

• In fact, slightly more refined spectroscopy turns out to be useful. For each
chosen lattice we may stack with q copies of the invertible phase

e
2πiq
p

∫ p+1
2

B∪B
, q = 0, ..., p− 1

This leads to a total of p(p+ 1) global variant of a theory.
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Global forms of SU(p) N = 4 Super-Yang-Mills II

• There are two important groups, acting on the space of global form.

• The first of them is the SL(2,Z) Montonen-Olive duality (which also acts on
the coupling τ):

S : (e,m) −→ (m,−e)
T : (e,m) −→ (e+m,m)

• Given a 4d theory with a Z(1)
p 1-form symmetry, one can introduce two

operations:

σ : Z[B(2)] −→
∑

b(2)∈H2(M4,Zp)

e2πi
∫
b2∪B(2)

Z[b(2)]

τ : Z[B(2)] −→ e
2πi
p

∫ p+1
2

B∪BZ[B(2)]

Together they generate the SL(2,Zp) group.
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Global forms of SU(p) N = 4 Super-Yang-Mills III

• A useful observation: global forms can be encoded in a ray matrix

M ∈ SL(2,Zp)/Z×
p

Indeed, |SL(2,Zp)|/|Z×
p | = p(p+ 1).

• Elements of SL(2,Z)× SL(2,Zp) act on M as

M −→ F (S, T )T M G(σ, τ), F (S, T ) ∈ SL(2,Z), G(σ, τ) ∈ SL(2,Zp)

Here S, T, σ, τ are represented by

S, σ =

(
0 −1
1 0

)
, T, τ =

(
1 1
0 1

)
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Global forms of SU(p) N = 4 Super-Yang-Mills IV

SU(2)0(
0 1
1 0

)
τT

SU(2)1

(
0 1
1 1

)

SO(3)+,0(
1 0
0 1

)
τ

SO(3)+,1

(
1 1
0 1

)

SO(3)−,0(
1 0
1 1

)
τ S

SO(3)−,1

(
1 1
1 0

)

S T

S T

σ

σ

σ

• Every global variant can be mapped to every other by the action of both
S, T ∈ SL(2,Z) and σ, τ ∈ SL(2,Zp).

• Every action of the modular group F (S, T ) can be undone by an appropriate
topological manipulation G(σ, τ). This is true independent of the global
variant M under consideration.
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Non-invertible symmetries of N = 4 su(p) Super-Yang-Mills I

G(σ, τ) F (S, T )

M M G(σ, τ) F (S, T )T M G(σ, τ)

NS

M F (S, T )T M G(σ, τ)

• In fact, it is a generic situation that a duality gives rise to a non-invertible
defect, so it is more reasonable to ask when the symmetry turns out to be
invertible. The corresponding global form must then satisfy the equation

F (S, T )TM = λMτn, λ ∈ Z×
p , n ∈ Zp

• Let us retain from looking at a possible anomaly, then we can concentrate on
the first column of M :

F (S, T )TM1 = λM1τ
n, λ ∈ Z×

p

• The duality transformation should also leave the coupling invariant:
F (S, T )τYM = τYM. These are S with τYM = i and ST with τYM = e2πi/3.
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Non-invertible symmetries of N = 4 Super-Yang-Mills II
• For F (S, T ) = S we are led to consider the characteristic equation

det(S − λI) = λ2 + 1 = 0 mod p

with the result

# solutions =


1, p = 2

0, p = 3

1 + (−1)
p−1
2 p > 3

• For F (S, T ) = ST the characteristic polynomial is

det(ST − λI) = λ2 − λ+ 1 = 0 mod p

with the number of solutions

# solutions =


0, p = 2

1, p = 3

1 + (−3|p) p > 3

p 2 3 5 7 11 13 17 19 23 29
S intrinsic? ✗ ✓ ✗ ✓ ✓ ✗ ✗ ✓ ✓ ✗
ST intrinsic? ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓
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Review of class S I

• The starting point is a 6d N = (2, 0) SCFT (of A, D or E type), which is
then compactified on a Riemann surface of genus g with n punctures. This
gives rise to a 4d N = 2 SCFT. [Gaiotto, ’09].

• In this talk we will restrict ourselves to theories of the type Ap−1, and to
Riemann surfaces with no punctures.

• 6d N = (2, 0) SCFT are relative theories, meaning that they have partition
vectors, rather than partition functions. [Witten ’09, Freed, Teleman ’12] This leads
to an extra choice to be made, a maximal isotropic sublattice L ∈ H3(X6,Zp):

⟨M3,M
′
3⟩ = 0, M3, M

′
3 ∈ L

• For the geometry of the form X6 = X4 × Σg (and assuming H1,3(X4,Z) = 0)
we have

H3(X6,Z) = H1(Σg ,Z) ⊗ H2(X4,Z)
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Review of class S I

• Correspondingly, we have the splitting of the maximal isotropic lattices:

L = L ⊗ H(X2,Z), L ∈ H(Σg ,Z)

So, in order to completely specify a class S theory, we need to pick up a
maximal isotropic sublattice γ ∈ H(Σg ,Z) [Tachikawa, ’13].

• Example: su(2) N = 4 SYM, with H(T2,Zp) = {1, A, B, A+B):

LA = {1, A} ←→ SU(2)

LB = {1, B} ←→ SO(3)+

LA+B = {1, A+B} ←→ SO(3)−

• Besides the sublattice L, also a representative of a non-trivial class in
L⊥ ⊗ H(X4, Zp) should be chosen, where L⊥ = H1(Σg , Zp)/L.

• This is summarized in the following notation for the theories under
consideration:

T p,g
L [Ω, B], B ∈ L⊥ ⊗ H2(X4,Zp)

Above, Ω is the period matrix of the Riemann surface, encoding the coupling
constants of the theory.
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Non-invertible symmetries in class S II
• Conceptually, the story is very similar to what we have seen for the N = 4

SYM.
• The global forms are encoded in symplectic ”ray” matrices

M ∈ Sp(2g, Z)/GL(g, Zp, )

• There can be defined topological manipulations, gaugings of 1−form
symmetries and stacking with invertible phases. Together they generate the
group Sp(2g,Zp). The elements of this group acts on the global structure of a
theory:

M −→ M G, G ∈ Sp(2g, Zp

• There is the duality group, the Mapping Class Group of the Riemann surface
(a.k.a. Gaiotto duality), which acts both on the period matrix (couplings)
and the global forms:

M −→ FT M, F ∈ Sp(2g, Z)
Ω −→ F [Ω]

• One can look for the fixed points (loci) in the space of couplings, F (Ω) = Ω.
This is done in the math literature, up to g = 5.

• Finally, the elements of the duality groups, having fixed points, can be
studied. The question is whether there are invariant isotropic sublattices in
H1(Σg , Zp. If so, we say that the non-invertible symmetry is non-intrinsic.
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Non-invertible symmetries in class S II

• As an example, consider the case of g = 2.

• Singular moduli of Sp(4,Z) occurring at isolated values of Ω, as well as loci of

complex dimensions one and twp. Here we have defined ρ := e
2πi
3 and

ε := e
2πi
5 .

Order Subgroup Generators Ω

10 Z10 ϕ
(

ε ε+ε−2

ε+ε−2 −ε−1

)
24 (Z2 × Z6) ⋊ Z2 M1,M2,M3

i√
3

(
2 1
1 2

)
Z12 × Z2 C,M4

(
ρ 0
0 i

)
32 (Z4 × Z4)⋊2 M5,M6,M7

(
i 0
0 i

)
48 GL(2, 3) M7,M8

1
3

(
1+2i

√
2 −1+i

√
2

−1+i
√
2 1+2i

√
2

)
72 Z3 × (Z6 × Z2) ⋊ Z2 M7,M9,M10

(
ρ 0
0 ρ

)
8 Z2 × Z4 C,N1

(
i 0
0 τ3

)
D8 M7, N2

( τ1
τ1

)
D8 M7, N3

(
τ1 0
0 τ1

)
12 Z2 × Z6 C,N4

(
ρ 0
0 τ3

)
D12 N5, N6

( τ1 τ1
τ1 τ1

)
4 Z2 × Z2 C,P1

(
τ1 0
0 τ3

)
Z2 × Z2 C,M7

( τ1 τ2
τ2 τ1

)
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Non-invertible symmetries in class S III

p 2 3 5 7 11 13 17 19 23 29
ϕ intrinsic? ✓ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓
M1 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
M2 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
M3 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
M7 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
M8 intrinsic? ✗ ✗ ✗ ✓ ✗ ✗ ✗ ✗ ✓ ✗
N2 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
N5 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗
N6 intrinsic? ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

• We see that two generators indeed give rise to intrinsically non-invertible
defects.

• There are cases where the group, leaving a particular period matrix invariant,
is generated by two or more generators, and while each of them separately
have an invariant sublattice, all of them together do not have one. In certain
sence, this non-invertibility can be considered as intrinsic.
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Conclusion

• We have discussed non-invertible symmetries in N = 4 SYM and class S at
g = 2. The cases of g = 3, 4, 5 are also analyzed, while the further progress is
hindered at the math side.

• The story of non-invertible symmetries in class S have an interesting
perspective from the Symmetry TFT point of view.

• Geometrical methods, applied here, can be used in other contecst, e.g. to
study non-invertible symmetries in theories, obtained by compactifications
from 6d to 3d or 2d.

• Another intriguing direction, left uncovered, and which is currently a subject
of active investigations, is the dynamical consequences that follow from the
presence of non-invertible symmetries.
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Thank you for your attention!
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