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Introduction

The main observables in cosmology are correlators:

CMB: ⟨almalm⟩ , LSS: ⟨δmδm⟩ (1)

The thermal history of the universe allows us to travel back in time to the end of
Inflation. With the correlators (1), we can look at the curvature perturbations at
the end of Inflation:

⟨ζ̂k1 ζ̂k2⟩ = (2π)3δ(k1 + k2)P(k1) (2)

Inflation lowers the energy scale to the IR, so we can try to describe these curva-
ture perturbation with some EFT. Who knows a lot about EFTs?

People from amplitudes!

Can we use the amplitudes technology to study cosmological correlators?

Santiago Agǘı Salcedo (University of Cambridge) The Analytic Wavefunction (2212:08009) 2 / 18



Introduction

The main observables in cosmology are correlators:

CMB: ⟨almalm⟩ , LSS: ⟨δmδm⟩ (1)

The thermal history of the universe allows us to travel back in time to the end of
Inflation. With the correlators (1), we can look at the curvature perturbations at
the end of Inflation:

⟨ζ̂k1 ζ̂k2⟩ = (2π)3δ(k1 + k2)P(k1) (2)

Inflation lowers the energy scale to the IR, so we can try to describe these curva-
ture perturbation with some EFT. Who knows a lot about EFTs?

People from amplitudes!

Can we use the amplitudes technology to study cosmological correlators?
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Born rules

The power spectrum at the end of Inflation P(k) can be computed through the
in-in formalism:

⟨ζ̂k1(t∗)ζ̂k2(t∗)⟩ = i

∫ t∗

−∞
dt⟨[Ĥint(t), ζ̂k1(t∗)ζ̂k2(t∗)]⟩ (3)

This can get very involved. We look back to quantum mechanics:

Observables: ⟨x̂2⟩ =
∫
dx |ψ(x)|2x2∫
dx |ψ(x)|2

(4)

We can import the Born rule to compute observables in Cosmology. Take ϕ to be
the value of some field Φ at the end of Inflation:

⟨ϕ̂k1 ϕ̂k2⟩ =
∫
Dϕ|Ψ[ϕ]|2ϕk1ϕk2∫

Dϕ|Ψ[ϕ]|2
(5)

How do we compute Ψ[ϕ]?
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Path integrals in Cosmology

Ψ[ϕ] is the path integral of the bulk field Φ with Dirichlet boundary conditions to
the past (t = −∞) and the future (t = t∗):

Ψ[ϕ] =

∫ Φ=ϕ

BD

DΦ e iScl[Φ] , Z =

∫ BD

BD

DΦ e iScl[Φ] (6)

The Bunch-Davies vacuum to the infinite past means that the interactions turn
off to the past. The main difference with respect to amplitudes is the future
boundary condition. Ψ[ϕ] allows for an expansion:

Log(Ψ[ϕ]) =
1

2

∫
k1k2

ψ(2)(k)ϕk1ϕk2 +
1

6

∫
k1k2k3

ψ(3)(k)ϕk1ϕk2ϕk3 + ... (7)

ψ(n)(k) are the wavefunction coefficients. They can be computed in perturbation
theory using Feynman diagrams. Its analytic structure is deeply related to that of
cosmological correlators.
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Wavefunction coefficients

Feynman diagrams for ψ(n)(k) involve a boundary at t = t∗

:

k1 k2 k3 k4 k1 k2 k3 k4 k1 k2 k3 k4

Contact Exchange
Loop

t t∗ t∗ t∗

External lines are bulk-to-boundary propagators. They obey the free theory equa-
tions of motion and Dirichlet boundary conditions:

(∂2t +Ω2
k)Kk(t) = 0 , Kk(t∗) = 1 , Ω2

k = k2 +m2 ⇒ Kk(t) = e iΩk(t−t∗) (8)

Internal lines are bulk-to-bulk propagators.

(∂2t1 +Ω2
k)Gk(t1, t2) = −δ(t1 − t2) , Gk(t∗, t2) = Gk(t1, t∗) = 0 (9)
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S-matrix programme

The S-matrix programme aimed to constrain the scattering amplitudes via sym-
metries and fundamental principles so much that there was only one possible an-
swer.

The S-matrix programme is specially relevant for the scattering of the lightest
particles in a gapped theory. Effective field theories are also tailored for this pur-
pose:

LUV = −1

2
(∂Φ)2 − 1

2
m2Φ2−1

2
(∂X )2 − 1

2
M2X 2 − g

2
XΦ2

LEFT = −1

2
(∂Φ)2 − 1

2
m2Φ2+

α0

4!
Φ4 +

α4

4
Φ2□2Φ2 + ...

(10)

αn are the Wilson coefficients of the EFT and are fixed by UV physics. The EFT
interactions are constrained by the IR symmetries and the boundary conditions.
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A(s,t) in the complex plane

A(s,t) is a function of s ∈ R. To study its analytic properties, we promote it to a
holomorphic function Ā(s, t) of s ∈ C. It satisfies the Schwarz reflection principle.

Ā(s, t) satisfies a dispersion
relation:

Ā(s, t) = Res
∞

(
Ā(s ′, t)

s ′ − s

)
+

∫
ds ′

2πi

disc(Ā(s ′, t))

s ′ − s

The residue at s ′ = ∞ is related
to UV subtraction. We have
included the isolated poles into
the discontinuity along the real
axis.
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Santiago Agǘı Salcedo (University of Cambridge) The Analytic Wavefunction (2212:08009) 9 / 18



A(s,t) in the complex plane

A(s,t) is a function of s ∈ R. To study its analytic properties, we promote it to a
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Sum rules

In an ideal world, we could compute Ā(s, t) directly from the UV theory. How-
ever, in practice, we often do not know (and cannot directly measure) the precise
UV physics.

RHS = ĀUV(s, t) = Res
∞

(
ĀUV(s

′, t)

s ′ − s

)
+

∫
ds ′

2πi

disc(ĀUV(s
′, t))

s ′ − s
= Ā(s, t) (11)

If we have access only to the IR degrees of freedom we can compute Ā(s, t) using
some EFT interactions:

LHS = ĀIR(s, t) = α0 + 2α4(s
2 + t2 + u2) +O(α6m

6) = Ā(s, t) (12)

Therefore, we can derive sum rules for the Wilson coefficients of the EFT evaluat-
ing the RHS integrals at s = 0 and taking derivatives on the LHS at s = 0:

Ā(0, 0) = α0 = Res
∞

(
ĀUV(s

′, 0)

s ′

)
+

∫
ds ′

2πi

disc(ĀUV(s
′, 0))

s ′
(13)
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ĀUV(s

′, 0)

s ′

)
+

∫
ds ′

2πi

disc(ĀUV(s
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RHS = ĀUV(s, t) = Res
∞

(
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= Ā(s, t) (11)

If we have access only to the IR degrees of freedom we can compute Ā(s, t) using
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Going off-shell

To go off-shell we do an analytic extension of the wavefunction coefficients ψ(n)(k):

We analytically extend the external lines with ωa as new variables:

Kk(t) = e iΩk (t−t∗) ⇒ Kω(t) = e iω(t−t∗) , ψ(n)(k) ⇒ ψ̃(n)(ω, k) (14)

We do not analytically extend internal lines.

The interpretation of these off-shell wavefunction coefficients ψ̃(n)(ω, k) is the
Fourier transform of the time-ordered in-out correlation functions.

ψ̃(n)(ω, k) =
n∏
a

(∫ t∗

−∞
dtae

iωa(t−t∗)

)

⟨ϕ = 0| T

(
n∏
a

Φ̂(ta)

)
|BD⟩︸ ︷︷ ︸

Loops + Amputated vertex
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Analytic structure I

The analytic structure of ψ̃(n)(ω, k) is studied for ω1 ∈ C with ωa ̸=1 > 0. The lo-
cation of all singularities is determined by the energy conservation at each vertex:∑

e

ωe +
∑
i

Ωpi = 0 (15)

ω1 ω2 ω3 ω4

Contact Exchange

t t∗ t∗
ω1 ω2 ω3 ω4

ω1 = −ω2 − ω3 − ω4

t

ω1 = −ω2 − Ωps

ps

All singularities are located on the ω1 negative real axis.
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Analytic structure II

ωT ψ̃
(n)(ω, k) is analytic in

the lower half of the ω1

complex plane.

ωT ψ̃
(n)(ω, k) is well defined

on the positive real axis.

There are no isolated poles
for massless fields.

ωT ψ̃
(n)(ω, k) also satisfies a dispersion relation:

ωT ψ̃
(n)(ω, k) = Res

∞

(
ωT ψ̃

(n)(ω′, k)

ω′ − ω1

)
+

∫
dω′

2πi

disc(ωT ψ̃
(n)(ω′, k))

ω′ − ω1
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New sum rules I

In amplitudes, the IR interaction vertices are constraint by the symmetries of the
theory and the boundary conditions:

We only look at bulk Lorentz invariant operators.

We have the LSZ reduction formula and asymptotically free states.

For an EFT of the wavefunction we need to enlarge the list of Wilson coefficients:

We have a boundary. This breaks the Lorentz invariance.

Interactions do not turn off to the future.

Lbulk
EFT ⊃α0

4!
Φ4+

α2

4
Φ2□Φ2 +

α4

4
Φ2□2Φ2

Lbdy
EFT ⊃β00

4!
Φ4(t∗) +

β20
4

Φ2(t∗)□Φ2(t∗)−
β11
4

Φ2(t∗)∂tΦ
2(t∗)

−β22
4

Φ2(t∗)∂
2
i Φ

2(t∗)−
β31
4

Φ2(t∗)∂t□Φ2(t∗)−
β

′

31

4
□Φ2(t∗)∂tΦ

2(t∗)
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New sum rules II

In a similar spirit to that of amplitudes:

IR ⇒ ωT ψ̃
(n)
IR (ω, k) =

∫
dω′

2πi

disc(ωT ψ̃
(n)(ω′, k))

ω′ − ω1
⇐ UV (16)

Evaluating the dispersion relation around vanishing kinematics we obtain the sum
rules for the old and new Wilson coefficients:

α0 =

∫
dω

2πi

disc(ωT ψ̃
(n)(ω, k))

ω

iβ00 =

∫
dω

2πi

disc(ωT ψ̃
(n)(ω, k))

ω2

(17)

Like for amplitudes, we have to take derivatives with respect to ωa ̸=1 and the in-
ternal momenta ps , pt , pu to obtain a complete list of the sum rules.
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Results and future perspectives

There is an analogy between amplitudes and wavefunctions:

in-out quantities: Scattering amplitudes ↔ Wavefunction coefficients

in-in quantities: Cross sections ↔ in-in correlators

We are 60 years behind amplitudes but we are bridging the gap.

There is an analogous object to Ā(s, t) given by the off-shell wavefunction
coefficients ψ̃(n)(ω, k).

The introduction of a boundary and new boundary conditions require the
introduction of new EFT interactions.

We can write sum rules that capture the Wilson coefficients of both
amplitudes and the new ones from wavefunction.

The future ahead:

How is UV bulk unitarity encoded in the boundary Wilson coefficients?

Can we build positivity bounds with these sum rules?

How do we import more amplitudes technology to ψ̃(n)(ω, k)?
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There is an analogous object to Ā(s, t) given by the off-shell wavefunction
coefficients ψ̃(n)(ω, k).

The introduction of a boundary and new boundary conditions require the
introduction of new EFT interactions.

We can write sum rules that capture the Wilson coefficients of both
amplitudes and the new ones from wavefunction.

The future ahead

:

How is UV bulk unitarity encoded in the boundary Wilson coefficients?

Can we build positivity bounds with these sum rules?

How do we import more amplitudes technology to ψ̃(n)(ω, k)?
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