

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

C. Grossi, V. Moreno, N. Fontova, Ll. Font

Worshop I+D+i en Radón Canfranc 11-13 noviembre 2024

Introducción

Introducción

Real decreto 1029/2022 y la protección frente al radón

Contenido

- 1. MODELO DOSIMÉTRICO DEL TRACTO RESPIRATORIO (HMRT) DE ICRP66 (1994).
- 2. ENFOQUE DEL CÁLCULO DOSIMÉTRICO ICRP 137 (2017)
- 3. EJEMPLO CÁLCULO DOSIMÉTRICO EN UN MINA TURÍSTICA
- 4. PROGRAMA DE CÁLCULO DE LOS COEFICIENTES DE DOSIS PARA CUALQUIER ESCENARIO
- 5. CONCLUSIONES

El modelo ICR66 divide el **tracto respiratorio** (HRTM) en distintos **compartimentos (**ET1, ET2, BB, bb y AI)

El modelo ICR66 divide el **tracto respiratorio** (HRTM) en distintos **compartimentos (**ET1, ET2, BB, bb y AI)

Modelo morfológico → Deposición inicial en los distintos compartimentos en función del <u>tamaño de la</u> partícula radiactiva inhalada y de la <u>ventilación pulmonar</u>

El modelo ICR66 divide el **tracto respiratorio** (HRTM) en distintos **compartimentos (**ET1, ET2, BB, bb y AI)

Modelo morfológico → Deposición inicial en los distintos compartimentos en función del <u>tamaño de la</u> partícula radiactiva inhalada y de la <u>ventilación pulmonar</u>

Modelo de transporte -> Coeficientes de trasferencia entre compartimentos

El modelo ICR66 divide el **tracto respiratorio** (HRTM) en distintos **compartimentos (**ET1, ET2, BB, bb y AI)

Modelo morfológico → Deposición inicial en los distintos compartimentos en función del <u>tamaño de la</u> partícula radiactiva inhalada y de la <u>ventilación pulmonar</u>

Modelo de transporte -> Coeficientes de trasferencia entre compartimentos

Modelo absorción en sangre -> Coeficiente de absorción en sangre en base a su **solubilidad**

El modelo ICR66 divide el **tracto respiratorio** (HRTM) en distintos **compartimentos (**ET1, ET2, BB, bb y AI)

Modelo morfológico → Deposición inicial en los distintos compartimentos en función del <u>tamaño de la</u> <u>partícula radiactiva inhalada</u> y de la <u>ventilación pulmonar</u>

Modelo de transporte -> Coeficientes de trasferencia entre compartimentos

Modelo absorción en sangre -> Coeficiente de absorción en sangre en base a su <u>solubilidad</u>

Modelo dosimétrico → Dosis absorbida en las células en base a las desintegraciones cada compartimento y <u>se ponderan por su radiosensibilidad y</u> por el <u>tipo de radiación</u> para calcular la dosis efectiva.

Dosis absorbida en las distintas células de las paredes del sistema respiratorio

$$E = w_{pulmón} w_R [A_{BB} D_{BB} + A_{bb} D_{bb} + A_{AI} D_{AI}]$$
$$D_{BB} = (D_{bas} + D_{sec})/2$$

- *D_i* es la dosis absorbida en las células de cada región (mGy por unidad de exposición: WLM, Bq/m³ h)
- A_i son los factores de ponderación que representan la sensibilidad estimada de cada región del pulmón. Los valores comúnmente utilizados son 1/3 para cada una de las 3 regiones (BB, bb y AI).
- w_R es el factor ponderación par la radiación alfa (20)
- *w*_{pulmón} es el factor de ponderación de la radiosensibilidad del pulmón (0.12)

Dosis efectiva *E (mSv):*

 $E = EEC_p \cdot t \cdot DC_p + EEC_n \cdot t \cdot DC_n + EEC_a \cdot t \cdot DC_a$

t tiempo de exposición

EEC_i Concentración equivalente en equilibrio (Bq/m³):

 $EEC_i = 0.104 \ C_{Po-218} + 0.514 \ C_{Pb-214} + 0.382 \ C_{Po-214}$ Unidades: 1 WL = 3750 Bq/m³ de EEC; 1 M = 170 h; \rightarrow 1 WLM = 6.37 10⁵ Bq m⁻³ h de EEC

Dosis efectiva *E (mSv):*

 $E = EEC_p \cdot t \cdot DC_p + EEC_n \cdot t \cdot DC_n + EEC_a \cdot t \cdot DC_a$

t tiempo de exposición

EEC_i Concentración equivalente en equilibrio (Bq/m³):

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Unidades: 1 WL = 3750 Bq/m³ de EEC; 1 M = 170 h; \rightarrow 1 WLM = 6.37 10⁵ Bq m⁻³ h de EEC

Metrología EEC:

- Hay varios equipos comerciales que pueden medir la EEC total. Muy pocos pueden medir cada uno de los descendientes de forma individual.
- La medición de la EEC libre, de nucleación y adherida no tienen trazabilidad metrológica (no se pueden calibrar). Sólo hay trazabilidad para la EEC total.
- Para la medición de todas las EEC sólo conozco 1 equipo.

Dosis efectiva *E (mSv):*

 $E = EEC_p \cdot t \cdot DC_p + EEC_n \cdot t \cdot DC_n + EEC_a \cdot t \cdot DC_a$

t tiempo de exposición

EEC_i Concentración equivalente en equilibrio (Bq/m³):

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Unidades: 1 WL = 3750 Bq/m³ de EEC; 1 M = 170 h; \rightarrow 1 WLM = 6.37 10⁵ Bq m⁻³ h de EEC

DC_{*i*} (*mSv por* Bq m⁻³ h) coeficiente de conversión a dosis por unidad de exposición para el <u>tamaño de la moda</u> *i* y <u>ventilación pulmonar</u> *B*

Dosis efectiva *E (mSv):*

 $E = EEC_p \cdot t \cdot DC_p + EEC_n \cdot t \cdot DC_n + EEC_a \cdot t \cdot DC_a$

t tiempo de exposición

EEC_i Concentración equivalente en equilibrio (Bq/m³):

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Unidades: 1 WL = 3750 Bq/m³ de EEC; 1 M = 170 h; \rightarrow 1 WLM = 6.37 10⁵ Bq m⁻³ h de EEC

DC_i (*mSv por* Bq m⁻³ h) coeficiente de conversión a dosis por unidad de exposición para el **tamaño de la moda** i y ventilación pulmonar **B**

Para su metrología se utilizan equipos complejos y de un coste elevado. Además, son equipos que miden el tamaño aerodinámico que no es igual que el tamaño aerodinámico en actividad, ya que es más probable que un descendiente en estado libre se adhiera a una partícula de mayor tamaño.

Dosis efectiva *E (mSv):*

 $E = EEC_p \cdot t \cdot DC_p + EEC_n \cdot t \cdot DC_n + EEC_a \cdot t \cdot DC_a$

t tiempo de exposición

EEC_i Concentración equivalente en equilibrio (Bq/m³):

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Unidades: 1 WL = 3750 Bq/m³ de EEC; 1 M = 170 h; \rightarrow 1 WLM = 6.37 10⁵ Bq m⁻³ h de EEC

DC_{*i*} (*mSv por* Bq m⁻³ h) coeficiente de conversión a dosis por unidad de exposición para el tamaño de la moda *i* y ventilación pulmonar **B**

Coeficiente Dosis efectiva E (mSv por Bq m⁻³ h):

$$\frac{E}{F \cdot C_{Rn} \cdot t} = (f_p \cdot DC_p + f_n \cdot DC_n + f_a \cdot DC_a)$$

 f_i fracción de descendientes de tamaño en la moda *i* en términos de energía alfa potencial: *EEC_i/ECC F factor de equilibrio* $F = EEC / C_{Rn}$

ICRP 137 proporciona los cálculos dosimétricos para **3 lugares de trabajo de referencia**, una **ventilación pulmonar B de 1.2 m³/h** y unas proporciones de las concentraciones de descendientes específicas.

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Adherido: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.75: 0.6

Libre: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.1: 0

ICRP 137 proporciona los cálculos dosimétricos para **3 lugares de trabajo de referencia**, una **ventilación pulmonar B de 1.2 m³/h** y unas proporciones de las concentraciones de descendientes específicas.

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Adherido: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.75: 0.6

Libre: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.1: 0

Lugar de trabajo	f_{p}	F	Moda i	f _{pi}	<i>AMTD_i</i> (nm)	σ_i	Densidad, $ ho_i$ (g cm ⁻³)	Factor de forma, χ _i	hgf _i	<i>AMAD_i</i> (nm)
Ectándar*	0.08	0.4	n	0.2	60	2.0	1.0	1.0	2.0	60
Estandar*			а	0.8	500	2.0	1.0	1.0	2.0	500
Mina	0.01	0.2	а	1.0	250	2.0	0.7	1.0	1.0	197
Cueva turística	0.15	0.4	а	1.0	200	2.0	1.0	1.0	1.0	200

Características del aerosol adherido

Universitat Autònoma de Barcelona

ICRP 137 proporciona los cálculos dosimétricos para 3 lugares de trabajo de referencia, una ventilación pulmonar B de **1.2 m³/h** y unas proporciones de las concentraciones de descendientes específicas.

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Características del aerosol adherido

Adherido: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.75: 0.6

Libre: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.1: 0

Dosis efectiva por unidad de exposición

Lugar de trabaio	f	E	Moda i	f _{pi}	<i>AMTD_i</i> (nm)	σ_i	Densidad, $ ho_i$ (g cm ⁻³)	Factor de forma, χ _i	hgf _i	AMAD _i (nm)	mSv/WLM (nSv per Bq h m ⁻³ EEC)	nSv per Bq h m ^{-3 222} Rn	mSv/WLM (nSv per Bq h m ⁻³ ECC)
trabajo	Jp										20		86 f + (1-f) 14
		. .	n	0.2	60	2.0	1.0	1.0	2.0	60		12	$(2)_{p} (1)_{p} (1)_{p}$
Estándar*	0.08	0.4									(31)		$(135 f_{p} + (1-f_{p}) 22)$
			а	0.8	500	2.0	1.0	1.0	2.0	500			$96 f \pm (1 f) 10$
			~								11	2 /	$30_{p} + (1_{p}) 10$
Mina	0.01	0.2	а	1.0	250	2.0	0.7	1.0	1.0	197	(17)	5.4	$(135 f_{\rm p} + (1 - f_{\rm p}) 16)$
 											23		$86 f_{-} + (1-f_{-}) 12$
Cueva	0.15	0.4	а	1.0	200	2.0	1.0	1.0	1.0	200	-	15	
turística		_		_		-			_		(36)		(135 <i>f</i> _n + (1-f _n) 19)

ICRP 137 proporciona los cálculos dosimétricos para **3 lugares de trabajo de referencia**, una **ventilación pulmonar B de 1.2 m³/h** y unas proporciones de las concentraciones de descendientes específicas.

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Características del aerosol adherido

Adherido: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.75: 0.6

Libre: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.1: 0

Dosis efectiva por unidad de exposición

Lugar de trabaio	f	F	Moda i	f _{pi}	<i>AMTD_i</i> (nm)	σ	Densidad, $ ho_i$ (g cm ⁻³)	Factor de forma, χ _i	hgf _i	<i>AMAD_i</i> (nm)	mSv/WLM (nSv per Bq h m ⁻³ EEC)	nSv per Bq h m ^{-3 222} Rn	mSv/WLM (nSv per Bq h m⁻³ ECC)
	Jp		n	0.2	60	2.0	1.0	1.0	2.0	60	20	10	86 <i>f</i> _p + (1-f _p) 14
Estándar*	0.08	0.4		0.2	00	2.0	1.0	1.0	2.0	00	(31)	12	$(135 f_p + (1-f_p) 22)$
			а	0.8	500	2.0	1.0	1.0	2.0	500	11		86 f _p + (1-f _p) 10
Mina	0.01	0.2	а	1.0	250	2.0	0.7	1.0	1.0	197	(17)	3.4	$(135 f_{p} + (1 - f_{p}) 16)$
Cueva	0.15	0.4		1.0	200	2.0	1.0	1.0	1.0	200	23	45	86 $f_{\rm p}$ + (1- $f_{\rm p}$) 12
turística	0.15	0.4	d	1.0	200	2.0	1.0	1.0	1.0	200	(36)	15	$(135 f_{\rm p} + (1-f_{\rm p}) 19)$

*Para una ventilación pulmonar de 0.86 m³/h, el coeficiente de dosis sería de 22 nSv per Bq h m⁻³ EEC (14 mSv/WLM)

ICRP 137 proporciona los cálculos dosimétricos para **3 lugares de trabajo de referencia**, una **ventilación pulmonar B de 1.2 m³/h** y unas proporciones de las concentraciones de descendientes específicas.

 $EEC_i = 0.104 C_{Po-218} + 0.514 C_{Pb-214} + 0.382 C_{Po-214}$

Características del aerosol adherido

Adherido: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.75: 0.6

Libre: ²¹⁸Po: ²¹⁴Pb: ²¹⁴Bi = 1: 0.1: 0

Dosis efectiva por unidad de exposición

Lugar de trabaio	f	F	Moda i	f _{pi}	<i>AMTD_i</i> (nm)	σ_i	Densidad, ρ _i (g cm ⁻³)	Factor de forma, χ _i	hgf _i	AMAD _i (nm)	mSv/WLM (nSv per Bq h m ⁻³ EEC)	nSv per Bq h m ^{-3 222} Rn	mSv/WLM (nSv per Bq h m ⁻³ ECC)
	Jp										20		86 $f_{\rm p}$ + (1- $f_{\rm p}$) 14
Estándar*	0.08	0.4	n	0.2	60	2.0	1.0	1.0	2.0	60	(31)	12	$(135 f_{\rm p} + (1-f_{\rm p}) 22)$
			а	0.8	500	2.0	1.0	1.0	2.0	500	11		$86 f_{\rm p} + (1-f_{\rm p}) 10$
												3.4	y p (p)
Mina	0.01	0.2	а	1.0	250	2.0	0.7	1.0	1.0	197	(17)		$(135 f_{p} + (1 - f_{p}) 16)$
Cueva											23		$86 f_{p} + (1-f_{p}) 12$
turística	0.15	0.4	а	1.0	200	2.0	1.0	1.0	1.0	200	(36)	15	$(135 f_{n} + (1-f_{n}) 19)$

*Para una ventilación pulmonar de 0.86 m³/h, el coeficiente de dosis sería de 22 nSv per Bq h m⁻³ EEC (14 mSv/WLM)

Recomendación ICRP 137:

11 mSv WLM⁻¹ para trabajadores en lugares estándar que realicen tabajo sedentario y minas subterráneas
 21 mSv WLM⁻¹ para trabajadores en lugares estándar que realicen tabajo con una cierra actividad física y en cuevas turísticas

Datos: publicación Agata Gryer et al.2022. Int. J. Environ. Res. PublicHealth **2022**, 19, 15778. https://doi.org/10.3390/ijerph192315778

Lugar de trabajo: Antigua mina de plata, actualmente turística Hay ventilación pero no hay generación de aerosoles por la actividad minera

Datos: publicación Agata Gryer et al.2022. Int. J. Environ. Res. PublicHealth 2022, 19, 15778. https://doi.org/10.3390/ijerph192315778

Lugar de trabajo: Antigua mina de plata, actualmente turística Hay ventilación pero no hay generación de aerosoles por la actividad minera

	Lugar f. F		mSv/WLM (nSv per Bq h m ⁻³ EEC)	nSv per Bq h m ^{-3 222} Rn
Lugar	f _p	F	11	2.4
Mina	0.01	0.2	(17)	3.4
Cueva Turística	0.15	0.4	23 (36)	15

: 1 / Cara

Datos: publicación Agata Gryer et al.2022. Int. J. Environ. Res. PublicHealth 2022, 19, 15778. https://doi.org/10.3390/ijerph192315778

Lugar de trabajo: Antigua mina de plata, actualmente turística

Hay ventilación pero no hay generación de aerosoles por la actividad minera

Caracteriz	ación según	lugar c	le referencia ICRP 137	mSv/WLM (nSv per Ba h m ⁻³ FEC)	nSv per Bq h m ^{-3 222} Rn
	Lugar	f _p	F	11	
	Mina	0.01	0.2	(17)	3.4
	Cueva	0.15	0.4	23	15
	TURISTICA			(30)	

Caracterización con medida de F y f_p ICRP 137

	Lugar	f _p	F	Ecuaciones ICRP 137	mSv/WLM (nSv per Bq h m ⁻³ EEC)	nSv per Bq h m ^{-3 222} Rn
	Mina	0.11	0.73	86 f _p + (1-f _p) 10	18	20
				(135 f _p + (1- f _p) 16	(29)	20
	Cueva	0 1 1	0 73	86 $f_p + (1-f_p)$ 12	20	22
	Turística			(135 f _p + (1- f _p) 19	(32)	23
Canfranc noviembre, 1	L2th			P		

Workshop I+D+i

26

Datos: publicación Agata Gryer et al.2022. Int. J. Environ. Res. PublicHealth 2022, 19, 15778. https://doi.org/10.3390/ijerph192315778

Lugar de trabajo: Antigua mina de plata, actualmente turística

Hay ventilación pero no hay generación de aerosoles por la actividad minera

Caracterización	según lu	gar de r	ferencia ICRP 137			
Lugar	f _p	F	(nSv p	ber Bq h m ⁻³ EEC)	nS۱	<i>i</i> per Bq h m ^{-3 222} Rn
Mina	0.01	0.2		11	/	3.4
Cueva	0.15	0.4		(17) 23		
Iuristica)			(36)		15
Caracterización (con med	ida de F	y f _p ICRP 137			
Lugar	f _p	F	Ecuaciones ICRP 137	mSv/WLM (nSv per Bq h m ⁻³	EEC)	nSv per Bq h m ^{-3 222} Rn
Mina	0.11	0.73	$86 f_p + (1-f_p) 10$	18		20
Cueva Turístic	0.11 a	0.73	$\frac{(135 l_p + (1 - l_p) 16}{86 f_p + (1 - f_p) 12}$	20		23
anc noviembre, 12th	-		(135 f _p + (1- f _p) 19	(32)		

Canf

Análisis de la influencia de la ventilación pulmonar

Si la ventilación pulmonar es distinta a 1.2 m³/h, el cálculo de la dosis de forma proporcional lleva A un error:

 $DC(X m^3/h) = DC(1.2 m^3/h)*X/1.2.$

ERROR QUE PUEDE SER DEL 20 %

Análisis de la influencia de la ventilación pulmonar

Si la ventilación pulmonar es distinta a 1.2 m³/h, el cálculo de la dosis de forma proporcional lleva A un error:

 $DC(X m^{3}/h) = DC(1.2 m^{3}/h) * X/1.2.$

ERROR QUE PUEDE SER DEL 20 %

UNIVERSITAT POLITÈCNICA

DE CATALUNYA

BARCELONATECH

Development of a Code for radon dose calculation

Autor: D. Nikezic (2001); Versión modificada con parámetros ICRP137: A.Vargas Basado en: ICRP 66 (1994): Human Respiratory Tract Model (HRTM) Lenguaje: FORTRAN; User friendly version: Python

About Radon Dose Calculator	cenarios	Aerosol	Concentration	Lungs	Libraries	RUN
					UNIVERSITAT BARCELONAT Institut de Ter	T POLITÈCNICA DE CATALUNYA ECH cniques Energètiques
About RadonQuant						
	Radon I and built Dosimetr This a exposi	Dose Calculator is a t to facilitate the estin diff model behind this P ic model created by of ICR application wants to ure and in implemen	Graphical User Interface (G mation of Dose due to Rador ferent scenarios. ython GUI is a modified versi D. Nikezic and K.N. Yu, 200 P66 and ICRP137. help in assessing the risk du ting the necessary reduction	UI) designed n exposure in ion of the 1, on the basis e to radon strategies.		

Radon Dose Calculator									_	o ×
	About Radon Dose	Calculator	Scenarios	Aerosol	Concentration	Lungs	Libraries	RUN		
								POLITÈCNICA DE CATALUNYA ECH		
								andono muo Annidono		
	Select the scenario you want to	work on.								
	MINE									
	TOURIST CAVE									
	INDOOR WORKPLACE									
🕂 🔎 Cerca	H	र 🖬 🖬 🤇	🦻 😫 🔇	X 🗄 🌐 📰 🦉	2		6 🤇	🖻 廼 🏊 🦁 🛅 🕼 h	i 😵 😍 i	21:06 📮

ator								- 0
About Radon Dose Cal	culator	Scenarios	Aerosol	Concentration	Lungs	Libraries	RUN	
						UNIVERSITA BARCELONA Institut de Te	T POLITÈCNICA DE CATALUNYA TECH coniques Energètiques	
Variables of aerosol particles in Unat	tached, Nucleation,	Accumulation and Coars	se mode. Fill the blanks a	and OK.				
	UNATTACHED	NUCLEATION	ACCUMULATION	COARSE				
Equivalent Volume Diameter(1)/ Thermodynamic Diameter(2)/ Aerodynamic Diameter(3)[nm]	<u>0</u>	3	3	3				
Median [nm]	1	0	197	0				
GSD [nm]	1.3	0	2	0				
Density [gcm-3]	1	1	0.7	1				
Shape Factor	1	1	1	1				
Higroscopy [%]	1	1	1	1				
				ОК				

Radon Dose Calculator								- 0	\times
	About Radon Dose Calculator	Scenarios	Aerosol	Concentration	Lungs	Libraries	RUN		
						UNIVERSITA BARCELONA Institut de Té	T POLITÈCNICA DE CATALUNYA FECH cniques Energètiques		
	Variables related to Radon and its progeny. F	ill the blanks and OK							
	Unattached Fraction	0.01							
	Nucleation Fraction	0							
	Accumulation Fraction	1							
	Coarse Fraction	0							
	Unattached Activity Ratio Pb-214/Po-218	0.1							
	Unattached Activity Ratio Bi-214/Po-218	0							
	Attached Activity Ratio Pb-214/Po-218	0.75							
	Attached Activity Ratio Bi-214/Po-218	0.6							
	Radon Air Concentration [Bqm-3]	300							
	Equilibrium Factor	0.2							
		ОК							
🗕 🔎 Cerca		🞛 🧿 🛂 🔕 🖽 💷				e (🛅 📶 🛼 🦁 🛅 🕼 🍘	🤅 🚷 🛟 21:09	9 🗐

Radon Dose Calculator									- 6) ×
	About Radon Dose C	alculator	Scenarios	Aerosol	Concentration	Lungs	Libraries	RUN		
							UNIVERSITA BARCELONAT Institut de Tèr	POLITÈCNICA DE CATALUNYA ECH niques Energètiques		
	Lung morphology and physiology	conditions. Table 15 p	age 50 ICRP 66. Fill the blan	iks and OK						
	Inhaled Air [m3h-1]	1.2]							
	Functional Residual Capacity	3301								
	Breathing Frequency [min-1]	18								
	Dead Spaces ET [ml]	50								
	Dead Spaces BB [ml]	49								
	Dead Spaces bbb [ml]	47								
		ОК								
💶 🛛 Cerca	E:		P3 🔕 X1 🔳	/			6 (a 👝 🛼 冈 🏣 🕼	🚷 🛟 21:	10 🖃

🦸 Radon Dose Calculator									_	D	\times
	About Radon Dose 0	Calculator	Scenarios	Aerosol	Concentration	Lungs	Libraries	RUN			
							UNIVERSITAT POL BARCELONATECH Institut de Tècnique	TÈCNICA DE CATALUNYA			
	Data you need for Program 3.										
	AF.DAT	UPDATE	ABSORBED FRACTIONS OF	FALPHAS (6 MeV and 7.8 M	leV) in sensitive cells (rapid and slow	mucus). TABLE H.1 P	AGE 43 ICRP 66.				
	RATE_CONSTANTS.DAT	UPDATE		Transport rates between	compartments. Table 29 page 112 IC	CRP 66					
	coeficiente_deposicion_v2.dat	UPDATE	Partiti	on of deposit in each region b	between compartments. Tabla 17 B p	ag 69 of ICRP 66.					
🕂 🔎 Cerca	H (0 🖬 💼	🧿 😰 🔕 💵 🌒	📅 🎟 🥖			🌔 💿 🤹	🖻 🛼 🦁 📼 ር፥) (1. 🚷 🔁	21:12	a

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Development of a Code for radon dose calculation

Radon Dose Calculator								
	About Radon Dose Calculator	Scenarios	Fitxer Ed	ta Cerca Visualitza Codificació Llenguatge Configuració Eines N	Macro Executa Complements Fin	lestres ? +		
						▼ ×		
				dat 🗵				
	Due		32			^		
	Run.		33	Effective dose conversion coefficient in mSV/WLM	1: 10.4134493 m.T.h.m=3• 2.94165230			
			35	Effective dose conversion coefficient in mSV / (Bq	[/m3 h ECC) 16.3476429			
	Generate INPUTS		36					
			37	ABSORBED DOSE IN mGy PER WLM IN DIFFERENT TARGET	'S OF HRTM:			
			38	Bronchial basal cells, DBB, bas:	3.37372589			
	Program 1		40	Bronchial basal cells(unattached): Bronchial basal cells(nucleation):	0.386093974			
			41	Bronchial basal cells (accumulation):	2.98763204			
	Brogram 2 DONEL		42	Bronchial basal cells(coarse):	0.0000000			
	Program 2 DONL!		43	Bronchial secretary cells, DBB, sec:	7.29214144			
			44	Bronchial secretary cells(unattached):	0.999386370			
	Program 3		45	Bronchial secretary cells (nucleation):	0.0000000			
			46	Bronchial secretary cells (accumulation):	6.29275465			
			47	Bronchial dose:	5 22202242			
			49	Bronchial dose (unattached):	0.692740202			
			50	Bronchial dose (nucleation):	0.0000000			
			51	Bronchial dose (accumulation):	4.64019346			
			52	Bronchial dose(coarse):	0.0000000			
			53	Bronchiolar dose:	7.64799929			
			54	Bronchiolar dose(unattached):	0.319954991			
			55	Bronchiolar dose (nucleation):	0.0000000			
			57	Bronchiolar dose(accumulation):	0.0000000			
			58	Alveolar-intersticial dose:	4.89085987E-02			
			59	AI dose(unattached):	6.36686891E-05			
			60	AI dose(nucleation):	0.0000000			
			61	AI dose(accumulation):	4.88449298E-02			
			62	AI dose(coarse):	0.0000000			
			63	Thoracic:	86.7787323			
			65	Thoracic (unattached):	0.0000000			
			66	Thoracic (accumulation):	80 0337677			
			67	Thoracic (coarse):	0.0000000			
			68	Total DCF:	10.4134474			
			69	DCF(unattached):	0.809396863			
			70	DCF(nucleation):	0.0000000			
			71	DCF(accumulation):	9.60405254			
			72	DCF(coarse):	0.0000000			
			74	and blue of Ploylam Sanaka		~		
			length: 39	57 lines:74 In:1 Col:1 Pos:1	Windows (CR LE) UTE-8	INS		
Q Cerca	H: 👩 🍋 🙃) 🛐 🚯 🕅 🔳 📰				🕅 🔚 LI)) 🥖 😫 🗣 21:14 💻		

Canfranc noviembre, 12th

- 1. ICRP 137 proporciona unos coeficientes de dosis para tres escenarios.
- 2. Su aplicación en lugares de trabajo "estándar" es directa y sencilla de utilizar.
- 3. En lugares de trabajo no estándar hemos encontrado parámetros diferentes a los valores por defecto presentados en ICRP.
- 4. Se recomienda lleva a cabo medidas de las concentraciones descendientes totales y libres en lugares de trabajo no estándar. Sin embargo, no existe todavía un sistema metrológico para la concentración equivalente en equilibrio de los descendiente en estado libre.
- 5. Las mediciones de los tamaños de aerosol son caras y complejas de llevar a cabo.
- 6. Se pretende realizar un análisis de sensibilidad de la dosis a las diferentes variables en el marco de un trabajo de doctorado que se iniciará en breve.

Agradecimientos

Este trabajo ha sido parcialmente financiado por el CSN en el marco de las ayudas de Investigación y Desarrollo (proyecto RADOsis)

Los autores quiere mostrar su agradecimiento la Dr. Nikezic por proporcionarnos los códigos en Fortan de los programas de cálculo de la dosis que han servido como base fundamental para la versión actualizada siguiendo ICRP137.

Así mismo, agradecer a Nuria Fontova que en el marco de su trabajo final de grado ha desarrollado la interfaz gráfica para usuarios en Python (Radon Dose Calculator)

