



# **MuonMonitor DAQ efficiency**

# MuonMonitor Workshop 10.08.2016, LSC, Canfranc

Maciej Slupecki Department of Physics, University of Jyväskylä





POHJOIS-POHJANMAAN LIITTO Council of Oulu Region









# **Signal flow:**

# → **Optical**:

- Plastic scintillator
- Optical wavelength-shifting fiber
- Avalanche Photodiode (APD)

# → Electrical:

- Time circuits -> Timing Board -> TDC
- Pattern Logic -> Hodoscope Board -> Pattern Unit
- Trigger generation

# → Logical (software)

- DAQ
- Binary file reader
- Analysis













### Plastic Scintillator & Fiber (2/12) Underground Physics in Pyhäsalmi 6



Pixel

SC1

True muon flux ( $\Phi_{t}$ )



# MM Workshop 10.08.2016





### SC16 Detector **Timing** depends on the number of photons arriving to APD Plastic Pixel Pixel scintillator Pixel Wavelength → detection threshold reached **faster &** with **less fluctuations** shifting fiber APD 5 3 (Avalanche PhotoDiode) (U) ATA (Automatic တ Threshold Adjustment) Timing circuit Pattern logic If discrimination threshold = 23 pe Timing board Hodoscope board Trigger Unit CAEN VME CAEN VME V1190 (TDC) V1495 (Pattern Unit) **Muon peak** (200 m.w.e.) PC emmadaq 'RunAsciiConverter 100 450





Side note:



→ Rate = 1.26 Hz

õ

5

100000

10000

1000

100

The number of events



m.w.e. MM Workshop 10.08.2016

 $\rightarrow$  more photons  $\rightarrow$  steeper the front edge of the pulse





True muon flux  $(\Phi_t)$ 



# Maciej Slupecki

# Side note:

**Timing** depends on the number of photons arriving to APD

- $\rightarrow$  more photons  $\rightarrow$  steeper the front edge of the pulse
- → detection threshold reached faster & with less fluctuations

# Because muon peak is **gaussian** – some **efficiency** is lost due to threshold setting $\rightarrow$ see next slide





Figure 2. Charge spectrum of events detected with the scintillator counter in the surface laboratory.

Figure 3. Charge spectrum of events detected with the scintillator counter at the underground laboratory at the depth of 200 m.w.e.

### Automatic Threshold Adjustments (1/13) ysics in Pyhäsalmi 9

 $\rightarrow$  **ATA** => Threshold voltage is adjusted so that counting rate

is kept at ~5 Hz for each pixel independently



True muon flux ( $\Phi_{t}$ )

SC16 Detector



# **10** Automatic Threshold Adjustment, (.2,/.3) ysics in Pyhäsalmi

Minimum threshold range

Muon peak (200 m.w.e.)

300 350

400 450

5





- → The dynamic range of adjustment is limited
   => there exists a minimum threshold
- $\rightarrow$  If the muon flux is low

250

200

150

100

50

50

100

The number of events

=> little high-energy (>~2.5MeV) gamma background is present

10000

10000

1000

100

SD

100

150

200 250

Charge, channel number

The number of events

- => the minimum threshold is reached
- => counting rate drops below 5 Hz

Minimum threshold range

Muon peak

(surface)





200

250

350

300

۱O

150



# 11 Automatic Threshold Adjustment, (3/3) ysics in Pyhäsalmi





- → The dynamic range of adjustment is limited
   => there exists a minimum threshold
- $\rightarrow$  If the muon flux is low

=> little high-energy (>~2.5MeV) gamma background is present

- => the **minimum threshold** is reached
- => counting rate drops below 5 Hz
- → Each pixel is an individual entity, one slightly different form another
   => the minimum threshold can also vary slightly, causing
   => very small differences in efficiencies between different pixels\*

\* The **minimum threshold** is located on the far left side of the Gaussian tail of the muon spectrum (low deposited energy), so it is not a significant effect



MM Workshop 10.08.2016





# **12** Time Chain (1/4)

Centre for Underground Physics in Pyhäsalmi





# → If more than one pixel was hit in an SC16 => only the time of the earliest one will be recorded and assigned to the whole SC16 detector => There is no way to recover the timing info from

=> There is no way to recover the timing info from other hit pixels (apart from hardware constraint of 50 ns window in the HB → see slide 10)



# **13** Time Chain (2/4)

**TODO:** 

Verify 400 ns







### Maciej Slupecki

# → If more than one pixel was hit in an SC16 => only the time of the earliest one will be recorded and assigned to the whole SC16 detector => There is no way to recover the timing info from other hit pixels (apart from hardware constraint of 50 ns window in the HB → see slide 10) → The VME TDC is set to accept and record data from relatively wide time range:

=> window width = 2  $\mu$ s, offset = -2.8  $\mu$ s)

- ie. event acquisition time:
- $\rightarrow$  starts 0.8 us before the trigger and
- $\rightarrow$  ends 1.2 us after the trigger
- => the trigger is generated ~400 ns after muon has passed through the detector

# **14** Time Chain (3/4)







Maciej Slupecki

# → If more than one pixel was hit in an SC16 => only the time of the earliest one will be recorded and assigned to the whole SC16 detector => There is no way to recover the timing info from other hit pixels (apart from hardware constraint of 50 ns window in the HB → see slide 10) → The VME TDC is set to accept and record data from relatively wide time range: => window width = 2 µs, offset = -2.8 µs) i.e. event acquisition time: → starts 0.8 us before the trigger and → ends 1.2 us after the trigger

=> the trigger is generated ~400 ns after muon has passed through the detector

# $\rightarrow$ **Stricter time cuts** should be applied in software

=> include into analysis only the time-correlated hits → without time calibration: +/- 11 ns\* from the mean value for each event

\* 11 ns can be justified based on timing studies (next slide)

# **15** Time Chain (4/4)

**TODO:** 

Verify 400 ns







### Maciej Slupecki

- → If more than one pixel was hit in an SC16
   => only the time of the earliest one will be recorded and assigned to the whole SC16 detector
  - => There is no way to recover the timing info from other hit pixels (apart from hardware constraint of 50 ns window in the HB → see slide 10)
- → The VME TDC is set to accept and record data from relatively wide time range:
  - => window width = 2  $\mu$ s, offset = -2.8  $\mu$ s)
    - ie. event acquisition time:
    - $\rightarrow\,$  starts 0.8 us before the trigger and
    - $\rightarrow\,$  ends 1.2 us after the trigger
  - => the trigger is generated ~400 ns after muon has passed through the detector
- $\rightarrow$  Stricter time cuts should be applied in software
  - => include into analysis only the time-correlated hits
    - $\rightarrow$  without time calibration: +/- 11 ns\* from the mean value for each event

# → No efficiency losses on the hardware side

\* 11 ns can be justified based on timing studies (next slide)

# 16 Extract from timing studies Centre for Underground Physics in Pyhäsalmi



Pixel

SC1

# **Conditions:**

- → only **verticals** accepted
- $\rightarrow$  calculate the **time difference** between top and bottom pixel
  - $=> 1 \times 8 \times 16$  pixel pairs
  - => 128 time distributions



# Reconstructed muon flux ( $\Phi_r$ ) Maciej Slupecki

'RunAsciiConverter'

Analysis ++++++++++++

# 17 Extract from timing studies Centre for Underground Physics in Pyhäsalmi





### MM Workshop 10.08.2016





# Covered signal paths:

- → Optical
- → Optical → electrical conversion (APD)
- → Automatic Threshold Adjustment (ATA)
- → Timing circuits

# **Upcoming:**

- → Pattern pathway
- → Trigger logics
- → Software



# Maciej Slupecki

# **19** Pattern Chain (1/7)

Centre for Underground Physics in Pyhäsalmi



# Sketch of operation:

- $\rightarrow$  SC16's Timing circuit sends info about time of a hit to TB=>TDC
- → Within the same event the Pattern circuit of the same SC16 should send a corresponding pattern info to HB => Pattern Unit
- → Sometimes pattern info is missing. Why?





# Sketch of operation:

- $\rightarrow$  SC16's Timing circuit sends info about time of a hit to TB=>TDC
- → Within the same event the Pattern circuit of the same SC16 should send a corresponding pattern info to HB => Pattern Unit
- → Sometimes pattern info is missing. Why?

# Partial explanation:

- $\rightarrow$  Hodoscope Board has an event buffer 50 ns long.
  - => If two hits are separated by more than 50 ns then
  - => Only the last one will be recorded
- → It is possible to loose pattern data from a valid muon event if:
   => the trigger arrives too late and data is not read out before
  - => the next 'local event' (gamma background, muon, noise no need for a trigger!), which follows real data at a very specific and relatively narrow **time window** (width: ~200 ns)
  - => Probability estimation:
    - $\rightarrow$  352 pixels  $\cdot$  200 ns  $\cdot$  5 Hz = 3.5e-4  $\ll$  1%
  - => Very unlikely (thanks to ATA) => not the answer



# Maciej Slupecki



# Sketch of operation:

- $\rightarrow$  SC16's **Timing circuit** sends info about time of a hit to TB=>TDC
- $\rightarrow$  Within the same event the **Pattern circuit** of the same SC16 **should** send a corresponding pattern info to HB => Pattern Unit
- $\rightarrow$  Sometimes pattern info is missing. Why?

# Partial explanation:

- → Hodoscope Board has an event buffer 50 ns long.
  - => If two hits are separated by **more than 50 ns** then
  - => Only the last one will be recorded
- $\rightarrow$  It is possible to loose pattern data from a valid muon event if: => the trigger arrives **too late** and data is not read out before
  - => the next 'local event' (gamma background, muon, noise no need for a trigger!), which follows real data at a very specific and relatively narrow time window (width: ~200 ns)
  - => Probability estimation:

 $\rightarrow$  352 pixels  $\cdot$  200 ns  $\cdot$  5 Hz = 3.5e-4  $\ll$  1%

- => Very unlikely (thanks to ATA) => **not the answer**
- $\rightarrow$  This probability **should be checked** from the collected data
  - => Apply a time cut of 22 / 6 ns (non-calibrated / calibrated data)
  - => Check in how many events pattern data is missing if time info is present for a given SC16
  - => Compare with scenario without the time cut

# MM Workshop 10.08.2016



# Maciej Slupecki

### True muon flux ( $\Phi_{t}$ )

# **22** Pattern Chain (4/7)





- → Total number of SC16 connected to the system => More SC16s => more losses
- $\rightarrow$  Trigger rate
  - => Lower rate => more losses
- $\rightarrow$  Location of an SC16 within setup
  - => Remote location => more losses
  - => Remote = away from the center => Lower probability to be hit by a triggered event
- $\rightarrow$  Participation of an SC16 in trigger generation
  - => Non-triggering SC16 => more losses



### Maciej Slupecki

# 23 Pattern Chain (5/7)





- → Total number of SC16 connected to the system => More SC16s => more losses
- → Trigger rate
  => Lower rate => more losses
- $\rightarrow$  Location of an SC16 within setup
  - => Remote location => more losses
  - => Remote = away from the center => Lower probability to be hit by a triggered event
- $\rightarrow$  Participation of an SC16 in trigger generation
  - => Non-triggering SC16 => more losses

# Are all of these really losses?

=> There is a small known component:

A number of events (~15) at the end of every data file misses pattern info:

- → It is caused by a known bug of Pattern Unit firmware
- → It only occurs when retrieving a non-full data buffer (end-of-file)
- → The acquisition time should be reduced by ~15s for every file
- $\rightarrow\,$  The exact effective acquisition time can be checked for each file







### True muon flux $(\Phi_t)$



### Maciej Slupecki

### Note:

- → What Alberto used to call 'efficiency' is actually the ratio between the number of events, in which:
  - => the time information and pattern information of
    - a particular SC16 was present and
  - => only the time information for the same SC16 was present
- $\rightarrow$  It is **not** related to the **pixel efficiency** to detect a muon



### True muon flux ( $\Phi_{t}$ )



Maciej Slupecki

### Note:

- $\rightarrow$  What Alberto used to call **'efficiency'** is actually the ratio between the number of events, in which:
  - => the time information and pattern information of a particular SC16 was present and
  - => only the time information for the same SC16 was present
- $\rightarrow$  It is **not** related to the **pixel efficiency** to detect a muon

# Pattern data transfer and timing

- $\rightarrow$  Relaxation time required for APD: 700 ns
- Serializing (SC): 750 ns  $(15 \times 50 \text{ ns})$  $\rightarrow$
- $\rightarrow$  Cable length (15 / 30 m): 75 / 150 ns
- → Deserializing (HB): 460 / 750 ns (clk: 35 / 20 MHz)
  - => Total maximum delay: 1650 ns
  - => HB cannot accept triggers earlier!

# verified = measured

# These times should be





### Maciej Slupecki

Reconstructed muon flux ( $\Phi_{r}$ )

# **27** Trigger (2/3)

Pixel

()

S



Pixel

SC1

Pixel

SC1

True muon flux ( $\Phi_{t}$ )

SC16 Detector

Plastic

scintillator

Wavelength shifting fiber

APD

(Avalanche PhotoDiode)

ATA (Automatic

Threshold Adjustment)

# Trg <= OrTop **AND** OrBottom

- $\rightarrow$  Only **TB signals** are used for trigger generation
- → All VME modules require (identical) trigger
  - => Trigger (event) numbers are the only way to synchronize data between several VME modules

# To accommodate HB's time requirement for trigger

- $\rightarrow\,$  TB's outputs are delayed by ~1.5  $\mu s$
- → Internal **delay** of Trigger Unit is additional 400 ns



### MM Workshop 10.08.2016

### Centre for Underground Physics in Pyhäsalmi



### True muon flux $(\Phi_t)$



Maciej Slupecki

# Trigger Unit features dead time generator

- → **Dead time** = no following trigger will be generated after the first trigger for a given time (50  $\mu$ s → it can be checked from data)
- $\rightarrow$  Different parts of the MM => different delays and acquisition times
- → Dead time prevents problems concerning forming of the event structure inside Memory buffers of the VME modules:
  - => **Misalignment** of event numbers between different VME modules
  - => A faster module (with shorter inherent busy time) may register 2 events, while the slower one is still transferring the data from the first event (and ignores the trigger)



# **29** DAQ software (1/4)



# emmadaq

- → Communicates with VME modules via:
  - => CAENVmeLib
  - => CAEN drivers of A2818 (PCI optical link)
  - => V2718 (VME controller)



# **30** DAQ software (2/4)

# emmadaq

- → Communicates with VME modules via:
  - => CAENVmeLib
  - => CAEN drivers of A2818 (PCI optical link)
  - => V2718 (VME controller)
- → VME modules:
  - => V1190  $\rightarrow$  **TDC** (Time-to-Digital Converter )
  - => V1495  $\rightarrow$  Pattern Unit (with programmable FPGA)
  - $\Rightarrow$  V830  $\rightarrow$  Scaler



Maciej Slupecki



### True muon flux $(\Phi_t)$

Centre for Underground Physics in Pyhäsalmi

# **31** DAQ software (3/4)

# emmadaq

- → Communicates with VME modules via:
  - => CAENVmeLib
  - => CAEN drivers of A2818 (PCI optical link)
  - => V2718 (VME controller)
- → VME modules:
  - => V1190  $\rightarrow$  **TDC** (Time-to-Digital Converter )
  - => V1495  $\rightarrow$  **Pattern Unit** (with programmable FPGA)
  - => V830 → **Scaler**
- $\rightarrow$  Functionality:
  - => Configuration of modules (read .conf files)
  - => Online control (IRQ handling)
  - => Download data from modules
  - => Preprocess data
    - => Rearrange data bits inside every word
    - => Relevant data is not modified otherwise
  - => Save to .emma binary file
  - => Control reset and reconfiguration of modules every hour, save data in **separate 1-hour files**



Maciej Slupecki

# CUPP

Centre for Underground Physics in Pyhäsalmi

# **32** DAQ software (4/4)

# emmadaq

- → Communicates with VME modules via:
  - => CAENVmeLib
  - => CAEN drivers of A2818 (PCI optical link)
  - => V2718 (VME controller)
- → VME modules:
  - => V1190  $\rightarrow$  **TDC** (Time-to-Digital Converter )
  - => V1495  $\rightarrow$  **Pattern Unit** (with programmable FPGA)
  - => V830 → **Scaler**
- $\rightarrow$  Functionality:
  - => Configuration of modules (read .conf files)
  - => Online control (IRQ handling)
  - => Download data from modules
  - => Preprocess data
    - => Rearrange data bits inside every word
    - => Relevant data is not modified otherwise
  - => Save to .emma binary file
  - => Control reset and reconfiguration of modules every hour, save data in **separate 1-hour files**
- → Raw data is saved into binary files:
  - => no checks of data consistency of the buffers sent via VME interface

# True muon flux (Φ<sub>t</sub>)

Centre for Underground Physics in Pyhäsalmi



Maciej Slupecki

# n flux (Φ<sub>t</sub>)

CUPP



# RunAsciiConverter (emmareader)

- → Functionality
  - => Interprets raw data stored in a binary file
    - $\rightarrow$  **Splits** data into data chunks associated with modules
    - → Decodes event and channel structure
    - → Detects data consistency errors
      - => Overflows of counters

- → fixes them
- => Event structure corruption -> marks file as bad
  - → Compares the total number of collected events with the last event number
  - → Compares last event number between modules
  - $\rightarrow$  Checks if event number counter starts from 0
  - → Checks if every next event number is larger by 1 than the previous event number





# RunAsciiConverter (emmareader)

# → Functionality

- => Interprets raw data stored in a binary file
  - $\rightarrow$  **Splits** data into data chunks associated with modules
  - → **Decodes** event and channel structure
  - → Detects data consistency errors
    - => Overflows of counters

- → fixes them
- => Event structure corruption -> marks file as bad
  - → Compares the total number of collected events with the last event number
  - → Compares last event number between modules
  - $\rightarrow$  Checks if event number counter starts from 0
  - → Checks if every next event number is larger by 1 than the previous event number

# => Transforms interpreted raw data into **detector-based** information

- $\rightarrow$  Reads map files
- → Transforms VME module and channel data into detector, pixel and data type (time or pattern) info
- → No data checks at this point (can be activated if needed)



# Maciej Slupecki



# RunAsciiConverter (emmareader)

# → Functionality

- => Interprets raw data stored in a binary file
  - $\rightarrow$  **Splits** data into data chunks associated with modules
  - → **Decodes** event and channel structure
  - → Detects data consistency errors
    - => Overflows of counters

- → fixes them
- => Event structure corruption -> marks file as bad
  - → Compares the total number of collected events with the last event number
  - → Compares last event number between modules
  - $\rightarrow$  Checks if event number counter starts from 0
  - → Checks if every next event number is larger by 1 than the previous event number

# => Transforms interpreted raw data into **detector-based** information

- $\rightarrow$  Reads map files
- → Transforms VME module and channel data into detector, pixel and data type (time or pattern) info
- → No data checks at this point (can be activated if needed)
- => Saves the reconstructed data into ASCII file



# Reconstructed muon flux (Φ<sub>r</sub>)

# Maciej Slupecki

# **36** Analysis (1/5)

Centre for Underground Physics in Pyhäsalmi



# The core of data selection options:

# → Read logbook

- => Skip bad runs (ie. RMM117)
- => Combine only similar runs

 $\rightarrow$  same trigger, location, geometry, shielding, etc.



# **37** Analysis (2/5)

### Centre for Underground Physics in Pyhäsalmi







Maciej Slupecki

# The core of data selection options:

- → Read logbook
  - => Skip bad runs (ie. RMM117)
  - => Combine only similar runs

 $\rightarrow$  same trigger, location, geometry, shielding, etc.

- → **Basic** quality cuts (in this order!)
  - => Require both timing and pattern data for every SC16
    - → If missing remove this SC16 from event (do not remove the whole event)
  - => Apply time cuts
    - → **Remove** SC16 from event if **Δt** > **21 ns** 
      - $=> \Delta t = time difference between SC16$ 
        - and average of the event
      - = 21 ns = 10 ns (FWHM) + 11 ns (systematics)
  - => 3-fold level coincidence (Top & Middle & Bottom)

# **38** Analysis (3/5)

### Centre for Underground Physics in Pyhäsalmi



### True muon flux ( $\Phi_t$ )



### Maciej Slupecki

# The core of data selection options:

- → Read logbook
  - => Skip bad runs (ie. RMM117)
  - => Combine only similar runs
    - $\rightarrow$  same trigger, location, geometry, shielding, etc.
- → **Basic** quality cuts (in this order!)
  - => Require both timing and pattern data for every SC16
    - → If missing remove this SC16 from event (do not remove the whole event)
  - => Apply time cuts
    - → **Remove** SC16 from event if **Δt** > **21 ns** 
      - $=> \Delta t = time difference between SC16$ 
        - and average of the event
      - => 21 ns = 10 ns (FWHM) + 11 ns (systematics)
  - => 3-fold level coincidence (Top & Middle & Bottom)
- → **Extended** quality cuts:
  - => Apply time calibration
    - $\rightarrow \Delta t < 11 \text{ ns} = 10 \text{ ns} (FWHM) + 1 \text{ ns} (systematics)$
  - => Use tracking
    - $\rightarrow$  ... huge topic ...

# **39** Analysis (4/5)

Centre for Underground Physics in Pyhäsalmi



The core of data selection options:

- → Convenience (multiplicity per level) cuts (should not be needed, but simplify tracking):
  - => MT=1 & MM=1 & MB=1

=> (MT≥1 & MM≥1 & MB≥1) & (MT≤2 & MM≤2 & MB≤2)



# **40** Analysis (5/5)



# The core of data selection options:

- → Convenience (multiplicity per level) cuts (should not be needed, but simplify tracking):
  - => MT=1 & MM=1 & MB=1
  - => (MT≥1 & MM≥1 & MB≥1) & (MT≤2 & MM≤2 & MB≤2)

### => M≥3 → EAS (Extensive Air Showers, not single muons) → According to Timo's multiplicity plot: (see slide 6, Data Analysis Tasks – yesterday's talk) A = #(MM=1 & MM=2) = 13.7 B = #(MM>2) = 1.14

### Ratio B/(A+B) = 7.7 %

=> Ratio of the number all proper events vs. EAS events

### → **Reasonable?**





Reconstructed muon flux ( $\Phi_r$ )

# Maciej Slupecki

# **41** Conclusions

Centre for Underground Physics in Pyhäsalmi



| [                                               |                           |                                                                                                                                                                         | True muon flux ( $\Phi_t$ )                                              |
|-------------------------------------------------|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Section of                                      | Muon / event<br>detection | Comment                                                                                                                                                                 |                                                                          |
|                                                 |                           |                                                                                                                                                                         | SC16 Detector                                                            |
| the system                                      | efficiency                |                                                                                                                                                                         | Plastic<br>scintillator 0 0                                              |
| Optical                                         | 100%                      |                                                                                                                                                                         | X   Wavelength<br>shifting fiber   X   X                                 |
| APD                                             | >>99%                     | <ul> <li>→ Possible minimal losses<br/>due to threshold setting</li> <li>→ very low energy muons lost</li> </ul>                                                        | APD<br>(Avalanche PhotoDiode)<br>ATA (Automatic<br>Threshold Adjustment) |
| Timing<br>chain                                 | 100%                      |                                                                                                                                                                         | Timing circuit Pattern logic                                             |
| Pattern<br>chain                                | ≤99.9%<br>>80%            | <ul> <li>→ Study dependence on HB<br/>channel → it seems there is none</li> <li>→ Any ideas how to check it?</li> </ul>                                                 | ↓     ↓       Timing board     Hodoscope board                           |
| Trigger                                         | >90%                      | <ul> <li>→ Losses related to dead time</li> <li>=&gt; Scaler data → get exact number</li> </ul>                                                                         | Trigger<br>Unit                                                          |
| emmadaq                                         | 100%                      |                                                                                                                                                                         | CAEN VME CAEN VME<br>V1190 (TDC) V1495 (Pattern Unit)                    |
| Binary file<br>reader and<br>ASCII<br>converter | ~99%                      | <ul> <li>→ Well known and controllable<br/>losses of data collection time</li> <li>→ EOF problems</li> <li>→ Check the acquisition times<br/>from every file</li> </ul> | ↓ ↓<br>PC<br>emmadaq<br>'RunAsciiConverter'                              |
| Analysis                                        | ?                         | → Should be carefully investigated<br>every time                                                                                                                        | Analysis<br>Reconstructed muon flux (Φ)                                  |

# MM Workshop 10.08.2016



# Thank you for your attention

