

Muon monitoring in CallioLab (CUPP) and LSC

MuonMonitor Workshop 09.08.2016, LSC, Canfranc

Maciej Slupecki Department of Physics, University of Jyväskylä

POHJOIS-POHJANMAAN LIITTO Council of Oulu Region

Angular distribution analysis:

→ At CUPP

- => EMMA experiment
- => Map of rock overburden
- => Experimental setup
- => Results

→ At LSC

=> Preliminary results

3 EMMA

Centre for Underground Physics in Pyhäsalmi

MM Workshop 09.08.2016

4 EMMA - pictures

Centre for Underground Physics in Pyhäsalmi

CUPP

Geometry:

- → **Temporary** part of a larger setup (EMMA experiment)
- \rightarrow 2 x 2 x 5 SC16s
- \rightarrow To make it comparable with LSC setup only **3 levels** are used in analysis:
 - => 1st (bottom)
 - => 3rd (middle)
 - => 5th (top)
 - \rightarrow Maximum **zenith angle** (solid angle) is **smaller**
 - \rightarrow otherwise **same analysis tools** can be used for both setups

MM Workshop 09.08.2016

Rock type, density and layout is **well mapped** (approximated by 3d boxes, resolution 1x1x1 m³)

MM Workshop 09.08.2016

Event selection:

- → **HW Trigger**: Top & Bottom
- → **SW Trigger**: Top & Mid & Bot
- → **Δt** < 20 ns
- \rightarrow Pixel **multiplicity** per level = 1 or <=2
- → **Tracking** (simplified):

=> use top and bottom coordinates to get a muon track (and angles)

=> check if the track passes through the correct pixel in the middle level – no fitting

Glossary (plot titles):

- → m1 muliplicity per level == 1
- → m1or2 multiplicity in every level is <=2</p>
 - => if there are two hits per level additional condition
 - of **closest neighbours** is requred no diagonals
- → **Direct centers of pixels** are used to define a muon track
- \rightarrow Smeared a random position within a pixel is used to define a muon track
 - => 100 x randomization with the weight of each result = 0.01
 - => The result is sort of a probability distribution of real muon track direction

MM Workshop 09.08.2016

MM Workshop 09.08.2016

Phi and theta distributions (direct) - projections

Why M=1 is not enough?

- \rightarrow bigger zenith angle
 - => higher probability for 2 pixels fired by 1 muon

MM Workshop 09.08.2016

CUPP

CUPP

Maciej Slupecki

Why M=1 is not enough?

- \rightarrow bigger zenith angle
 - => higher probability for 2 pixels fired by 1 muon

MM Workshop 09.08.2016

Why M=1 is not enough?

→ distorted zenith angle distribution

MM Workshop 09.08.2016

CUPP

Why M=1 is not enough?

→ distorted zenith angle distribution

MM Workshop 09.08.2016

CUPP

Maciej Slupecki

Why M=1 is not enough?

→ distorted zenith angle distribution

MM Workshop 09.08.2016

How do these distributions look like at LSC?

MM Workshop 09.08.2016

16 Angular distribution at LSC (2/6)nderground Physics in Pyhäsalmi

MM Workshop 09.08.2016

Maciej Slupecki

CUPP

MM Workshop 09.08.2016

Maciej Slupecki

CUPP

Zenith angle distributions at LSC

Zenith angle distributions at LSC

MM Workshop 09.08.2016

Zenith angle distributions at LSC

The following effects convolute:

- \rightarrow Shape of rock overburden
- → Density distribution of rock above
- → Inefficiencies of pixels
- → Primary cosmic-ray distribution

How to extract single quality?

slice_py_of_m2anm1-phi-theta

77857

46.56

14.07

Entries

Mean

RMS

80

theta [deg]

90

Zenith angle distributions at LSC slice_py_of_m1-phi-theta 5000 4500 113077 Entries $L \equiv (MT=1 \& MM=1 \& MB=1)$ R ≡ (M≥1 & M≤2) & Not L Mean 37.72 RMS 14.47 1 jo 34000 Jaquing 500 1 Jo Jaquin N 500 3000 3000 2500 2500 2000 2000 1500 1500 1000 1000 500 500 0 0^E 70 20 50 60 70 80 10 20 30 40 50 60 10 30 40 90

Zenith angle distributions at CUPP (EMMA level)

theta [deg]

Maciej Slupecki

MM Workshop 09.08.2016

MM Workshop 09.08.2016

23 Conclusions

Irregular zenith angle distribution:

- → Asymmetric rock overburden
- → Something wrong with event selection?
 => favouring large zenith angles?
- → Very preliminary
- → Simulation needed
 - => Including (even rough map of rock overburden)
 - \rightarrow Maps, mountain cross-sections?
 - → A new task to create this map?
 - => Estimate muon energy cutoff (or m.w.e) vs. zenith angle, based on rock maps

24 Conclusions

Irregular zenith angle distribution:

- → Asymmetric rock overburden
- → Something wrong with event selection?
 => favouring large zenith angles?
- → Very preliminary
- → Simulation needed
 - => Including (even rough map of rock overburden)
 - \rightarrow Maps, mountain cross-sections?
 - → A new task to create this map?
 - => Estimate muon energy cutoff (or m.w.e) vs. zenith angle, based on rock maps

Thank you for your attention

25 Update 10.08.2016

Azimuth distributions @ LSC (X-Projections of slide 17):

ProjectionX of biny=[1,90] [y=0.0..90.0]

ProjectionX of biny=[1,90] [y=0.0..90.0]

Maciej Slupecki

MM Workshop 09.08.2016

Zenith distributions @ different azimuth slices (30 degrees wide)

MM Workshop 09.08.2016

Zenith distributions @ different azimuth slices (30 degrees wide)

MM Workshop 09.08.2016