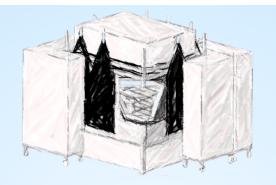
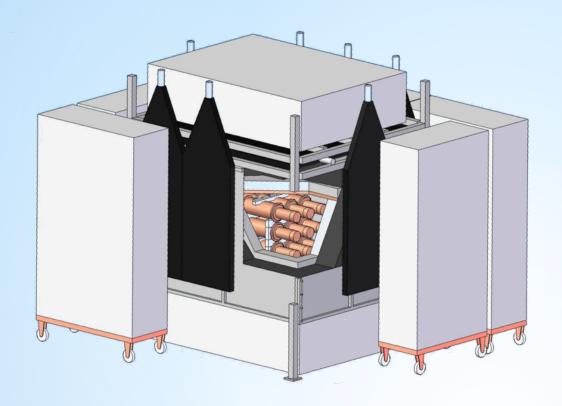
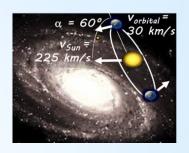

PROGRESS REPORT OF ANAIS (EXP-01-2008)





Outline

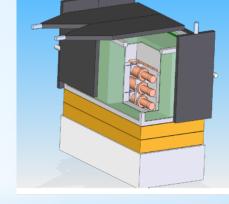
- Preliminary Data Analysis of A37D3 set-up
 - Radiopurity of D3 module
 - Performance of D3 module
- Mounting and Preliminary Results from the measurements of 1kg AS samples
- Update on the Simulation of a Liquid Scintillator Veto
- Progresses in the ANAIS Background Model
- Status of the Detector Purchase and ANAIS Experimental Planning
- Contacts for Collaboration with International Partners



ANAIS Goals

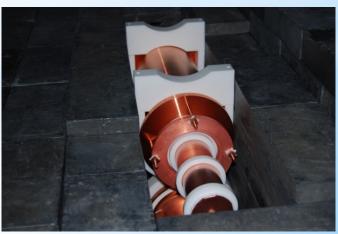
Annual modulation with NAI Scintillators

- Confirmation of DAMA-LIBRA modulation signal -> same target and technique / different experimental approach / different environmental conditions affecting systematics
- At Canfranc Underground Laboratory, @ SPAIN (under 2450 m.w.e)
- 3x3 matrix of 12.5 kg modules = 112.5 kg of active mass

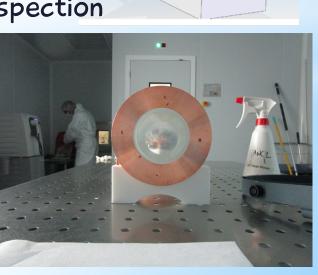


ANAIS DO, D1, D2

- 12.5 kg cylindrical NaI(TI) detectors built @ AS
- ANAIS25 set-up (D0+D1) data taking @ LSC
 from Dec 2012 March 2015
- ANAIS37 set-up (D0+D2+D1) data taking since March 2015

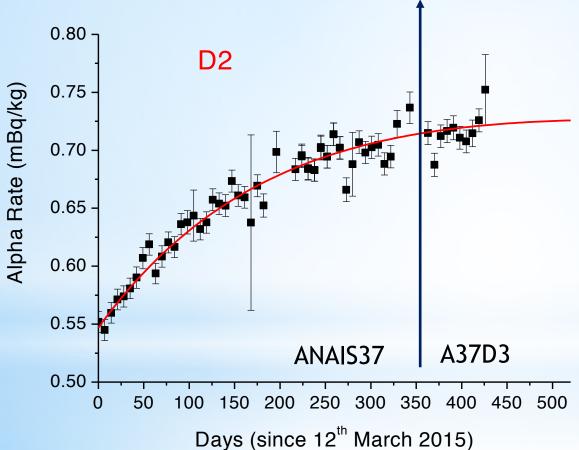


- Mylar window allowing LE calibration
- HE PMT Ham R12669SEL2
- WIMPScint-II powder ->D2



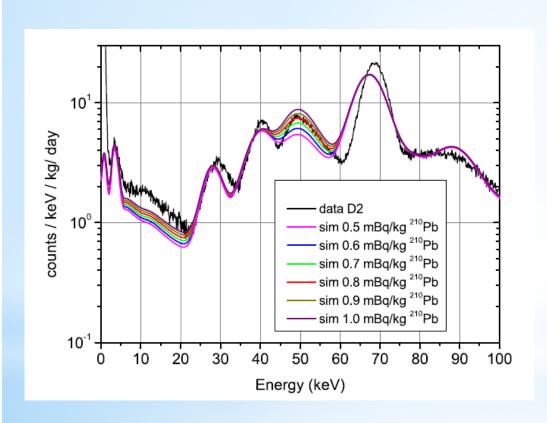
ANAIS D3

- 12.5 kg cylindrical NaI(TI) detectors built @ AS
- ANAIS25 set-up (D0+D1) data taking @ LSC
 from Dec 2012 March 2015
- ANAIS37 set-up (D0+D2+D1) data taking since
 March 2015
- A37D3 set-up (D0+D3+D2) data taking since March
 2016
 - WIMPScint-III powder ->D3
 - D3 showed excellent optical quality by eye inspection
 - Very fast mounting and starting data taking

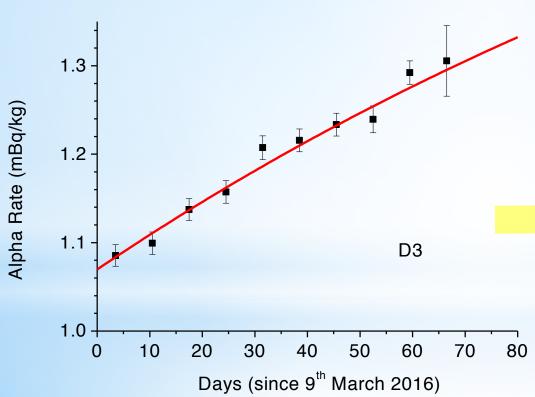

A37D3 Light Collection

Excellent light collection in all AS modules and set-ups

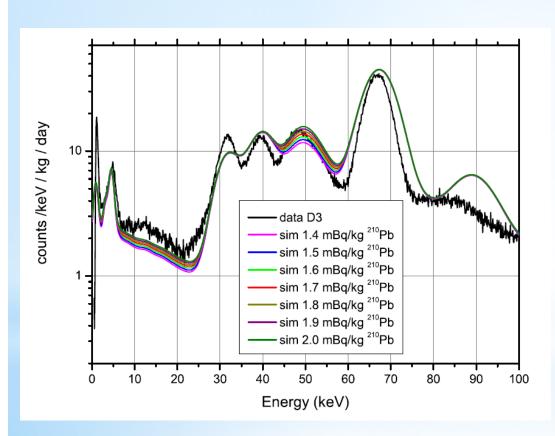
Detector	PMT/set-up	Total Light Collection (phe/keV)
D0	Ham R6956 / ANAIS25	15.6 ± 0.2
	Ham R6956 / ANAIS37	15.3 \pm 0.1
	Ham R6956 / A37D3	15.1 ± 0.1
D1	Ham R11065 / ANAIS25	12.6 ± 0.1
	Ham R6956 / ANAIS25-III	15.2 \pm 0.1
	Ham R6956 / ANAIS37	14.4 \pm 0.1
D2	Ham R6956 / ANAIS37	15.4 ± 0.1
D3	Ham R6956 / A37D3	15.2 ± 0.5


Total Alpha Rate in D2

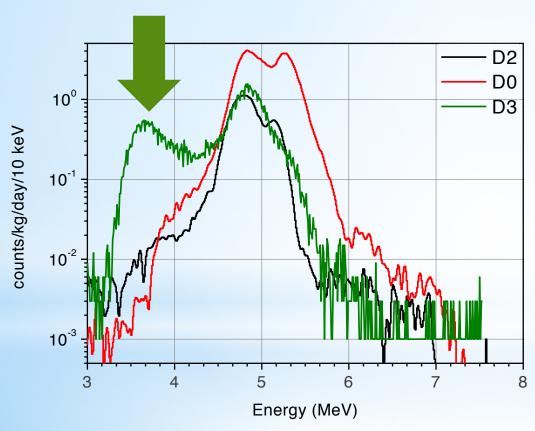
- ²¹⁰Pb crystal content at the level of 0.72 mBq/kg
- Effective reduction of Rn entrance achieved in WIMPScint-II powder production / D2 building procedures
- Further improvement was expected for WIMPScint-III powder (according to AS)


²¹⁰Pb contamination from alpha rate and LE spectrum in D2

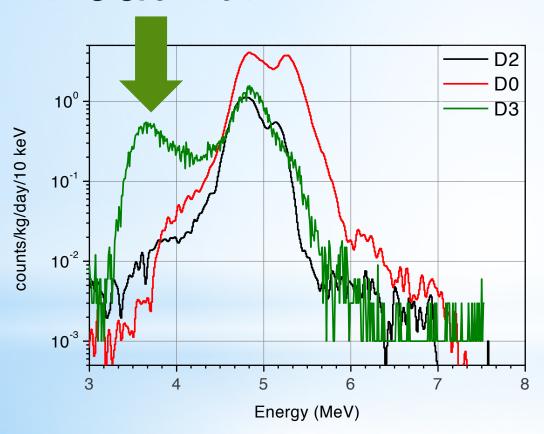
- ²¹⁰Pb crystal content at the level of 0.72 mBq/kg
- Effective reduction of Rn entrance achieved in WIMPScint-II powder production / D2 building procedures
- Further improvement was expected for WIMPScint-III powder (according to AS)

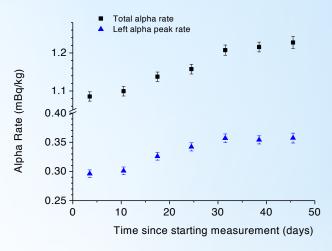

Total Alpha Rate in D3

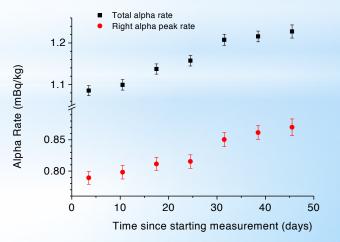
- Still building ²¹⁰Po activity at high rate
- ²¹⁰Pb crystal content at the level of 1.3 mBq/kg, probably still increasing up to 1.6-1.8 mBq/kg
- observed in WIMPScint-III
 powder (being discussed with
 AS) more information later on


²¹⁰Pb contamination from alpha rate and LE spectrum in D3

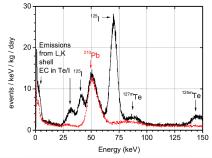
- Still building ²¹⁰Po activity at high rate
- ²¹⁰Pb crystal content at the level of 1.3 mBq/kg, probably still increasing up to 1.6-1.8 mBq/kg
- WORSENING of ²¹⁰Pb levels observed in WIMPScint-III powder (being discussed with AS) – more information later on

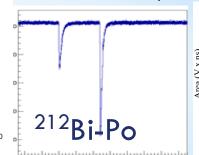

Total Alpha Rate in D3

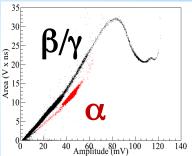



- Very different alpha spectrum (working with AS to understand the origin)
 - Surface contaminations?
- Study of Rn-Po alpha-alpha sequences in D3 point to similar content in ²³²Th chain than D2

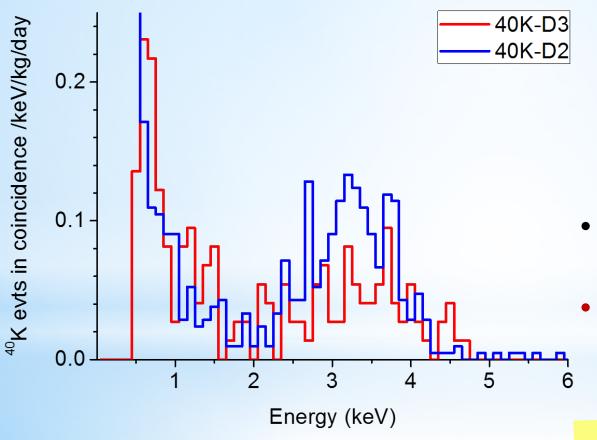
 Total Alpha Rate in D3: left and right peaks show similar time evolution

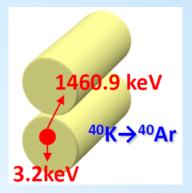




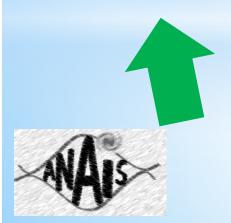

	⁴⁰ K	²³⁸ U	²¹⁰ Pb	²³² Th
D0		9 μBq/kg	3.1 <i>5</i> mBq/kg	5 μBq/kg (²²⁰ Rn- ²¹⁶ Po) 3 μBq/kg (²¹² Bi-Po)
D1		9 μBq/kg	3.1 <i>5</i> mBq/kg	4 μBq/kg (²²⁰ Rn- ²¹⁶ Po)
D2		2.7 μBq/kg	0.70 mBq/kg	≈1 μBq/kg (²²⁰ Rn- ²¹⁶ Po) ≈1 μBq/kg (²¹² Bi-Po)
D3		~4 μBq/kg	>1.3 mBq/kg	≈0,6 μBq/kg (²²⁰ Rn- ²¹⁶ Po) ≈0,6 μBq/kg (²¹² Bi-Po)

Determined by alpha rate and Bi/Po & Rn/Po sequences. Verified by simulations





Potassium content in D3: 58,95 days live time



Determined by coincidence analysis

- Very high efficiency for the coincidence
 - Potassium content has clearly improved in WIMPScint-III powder, present estimate is: 22±4 ppb

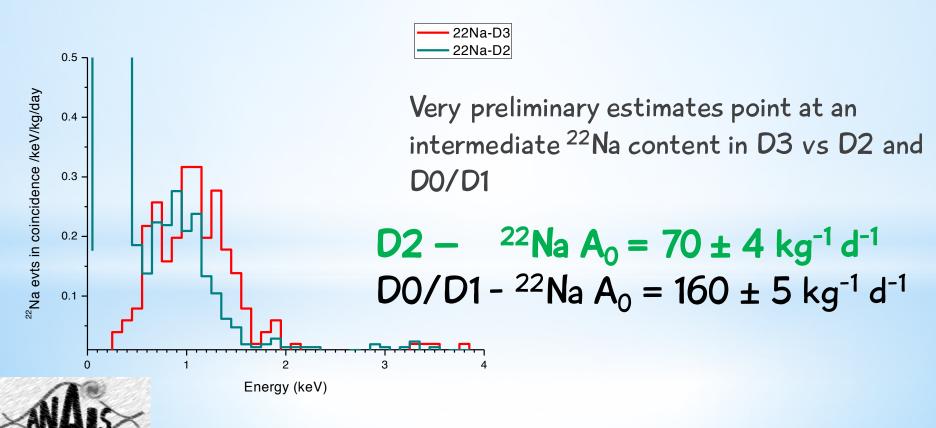
	⁴⁰ K	²³⁸ U	²¹⁰ Pb	²³² Th
D0	1.4 mBq/kg (45 ppb K)	9 μBq/kg	3.15 mBq/kg	5 μBq/kg (²²⁰ Rn- ²¹⁶ Po) 3 μBq/kg (²¹² Bi-Po)
D1	1.1 mBq/kg (34 ppb K)	9 μBq/kg	3.15 mBq/kg	4 μBq/kg (²²⁰ Rn- ²¹⁶ Po)
D2	1.1 mBq/kg (34 ppb K)	2.7 μBq/kg	0.70 mBq/kg	≈1 μBq/kg (²²⁰ Rn- ²¹⁶ Po) ≈1 μBq/kg (²¹² Bi-Po)
D3	0.65 mBq/kg (22 ppb K)	~4 μBq/kg	>1.3 mBq/kg	≈0,6 µBq/kg (²²⁰ Rn- ²¹⁶ Po) ≈0,6 µBq/kg (²¹² Bi-Po)

Other Background Features

Cosmogenic ²²Na determination

After initial application of D2-background model, high energy events rate pointed at a lower ²²Na content with respect to D0 and D1 modules. We have checked this is true with the A37Blank data, after most of the other cosmogenic isotopes decayed

It is important to care about avoiding activation while building the detectors


D2 -
22
Na $A_0 = 70 \pm 4 \text{ kg}^{-1} \text{ d}^{-1}$
D0/D1 - 22 Na $A_0 = 160 \pm 5 \text{ kg}^{-1} \text{ d}^{-1}$

Other Background Features

Cosmogenic ²²Na determination

In the case of D3, we should determine ²²Na content after the decay of most of the other short-lived cosmogenics

ANAIS data analysis

Background DATA

Application of cuts

Energy calibration

Determination of trigger efficiency

Checking cut efficiency

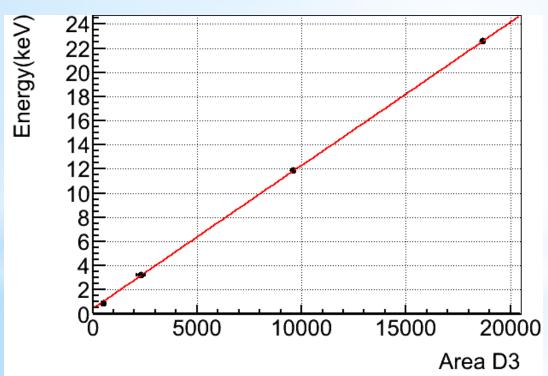
- efficiency
- Cut & Trigger Efficiency correction

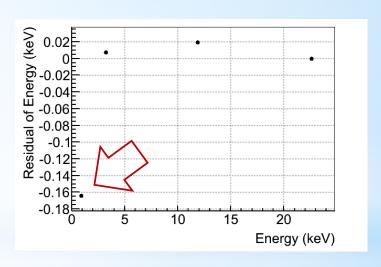
Building filtered background

External calibration source DATA

• 109Cd / 57Co

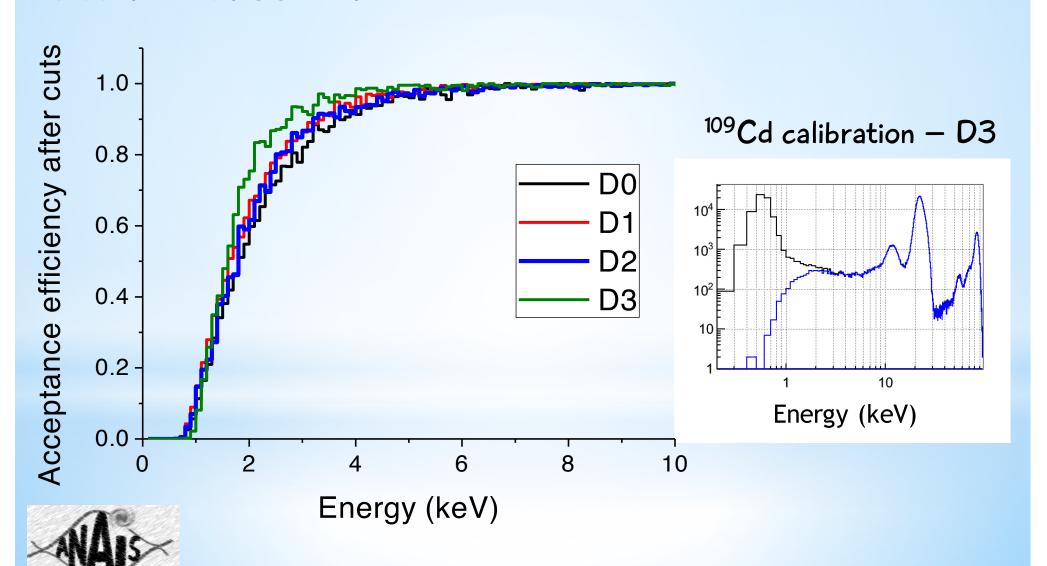
Mylar window

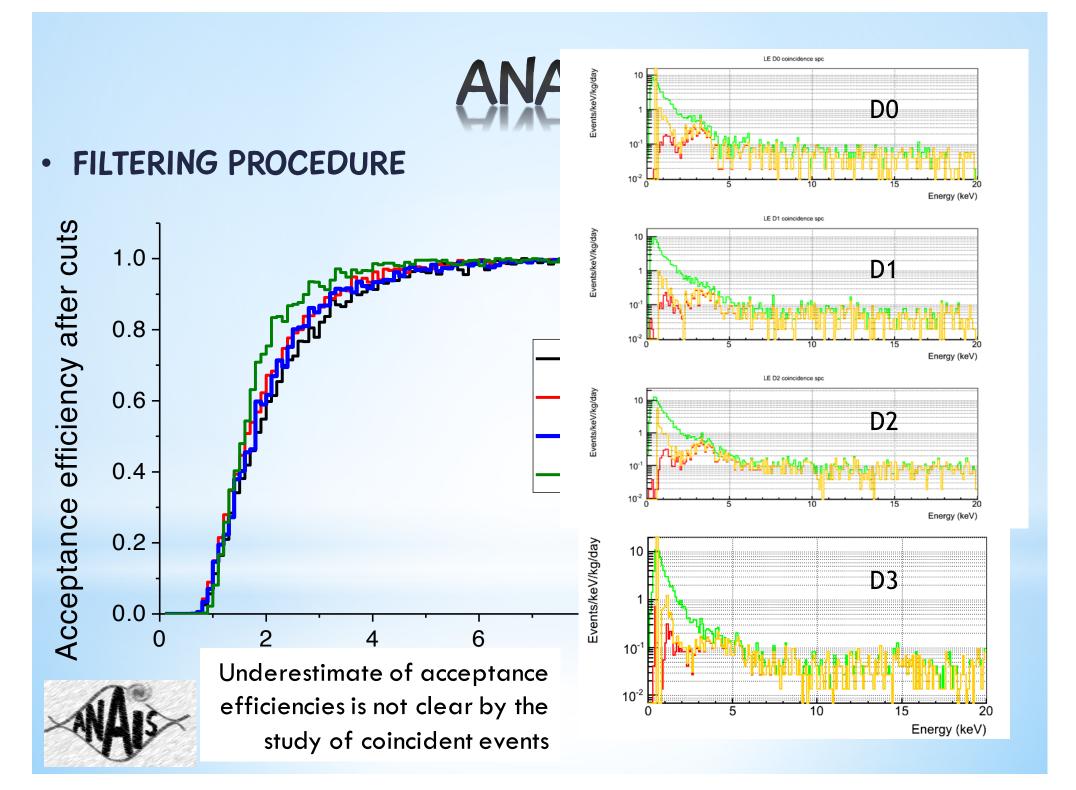

Energy calibration


Determination of cut efficiency

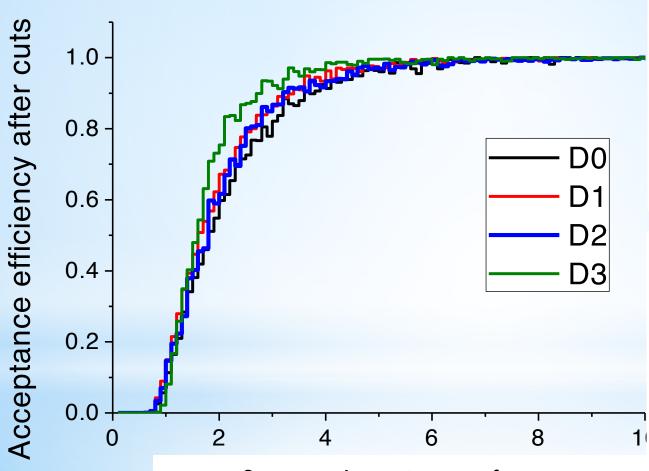
D3 calibration @ yery low energy

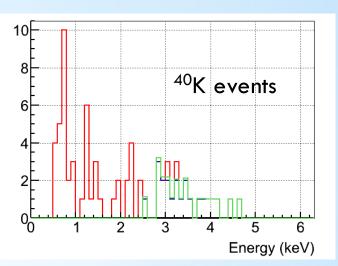
- Good calibration down to threshold:
 - External source ¹⁰⁹Cd
 - 3.2 keV and 0.9 keV lines (still few number of events)

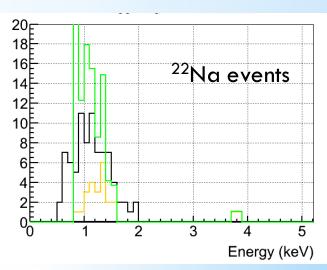




ANAIS data analysis

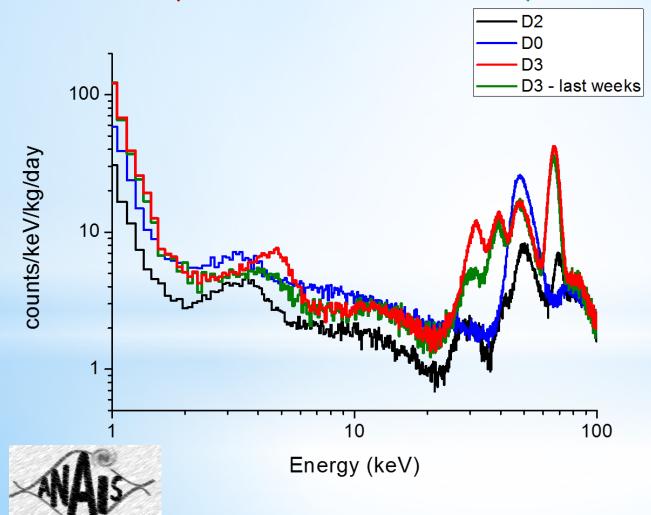

FILTERING PROCEDURE

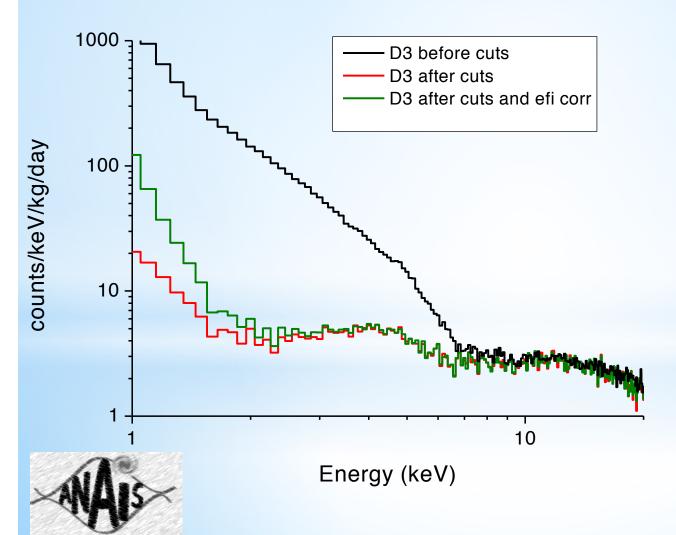




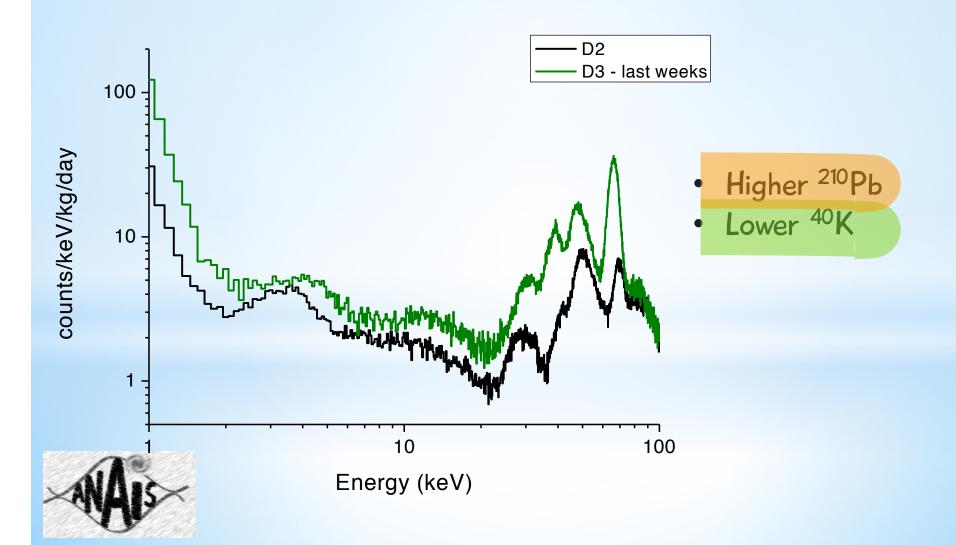
ANAIS data analysis

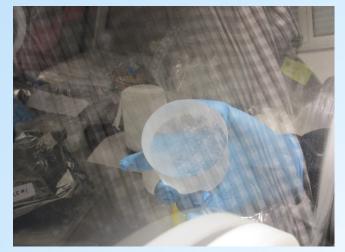
FILTERING PROCEDURE




Some underestimate of acceptance efficiency could be indicated by ²²Na events (below 2 keVee)

- Low Energy Background in D3
 - 60 days of live time / last 20 days


- Still decaying D2/D3
 bckg
- Background at 20 keV
 2counts/keV/kg/day
- Filtering for D3 not yet optimized
- More aggressive filtering protocols still under study


Low Energy Background in D3

- Still decaying D2/D3
 bkg
- Background at 20 keV
 2counts/keV/kg/day
- Filtering for D3 not yet optimized
- More aggressive filtering protocols still under study

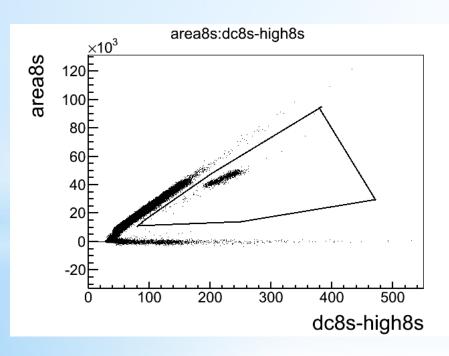
Low Energy Background in D3 vs Background in D2

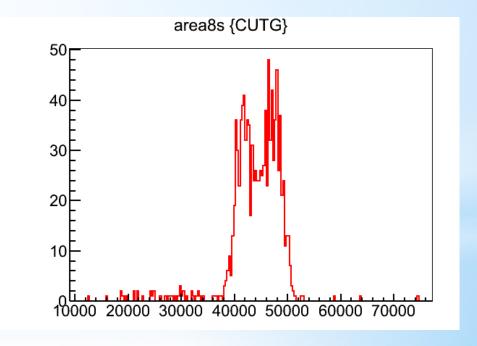
AS 1kg samples mounting

Trying to understand the origin of the ²¹⁰Pb contamination in D3 module AS prepared two 1kg crystal pieces to be measured at LSC

The goal was to discard surface contamination from the Teflon used in D3

They have been coupled to two PMTs at UZ glove box and measured at LSC (still ongoing)


AS 1kg samples results

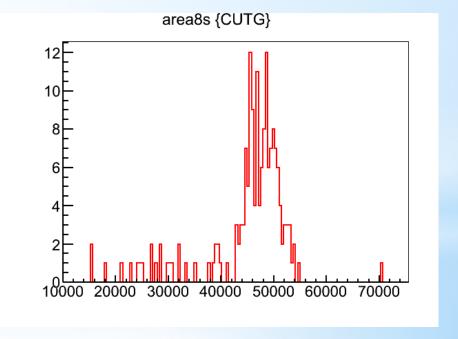

PSA allows easily the identification and quantification of the alpha rate.

Sample #1: 1.3 mBq/kg

Same ingot as D3

10 days of data

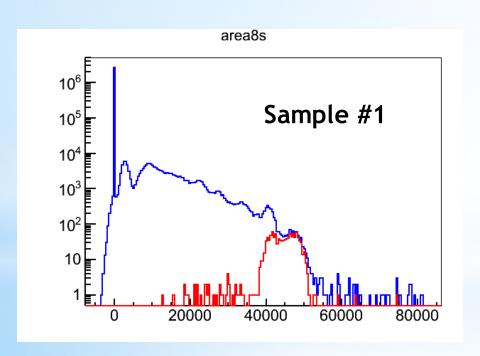
The treatment of the surfaces made at AS is under revision by the company

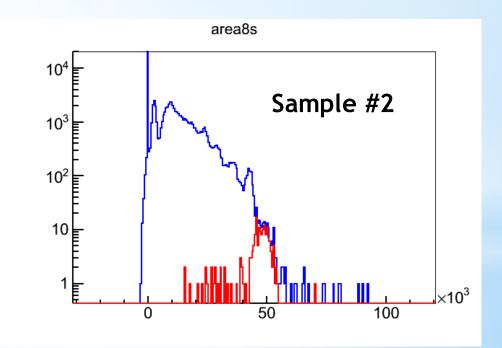

AS 1kg samples results

PSA allows easily the identification and quantification of the alpha rate.

Sample #2: 0.6 mBq/kg

6.7 days of data

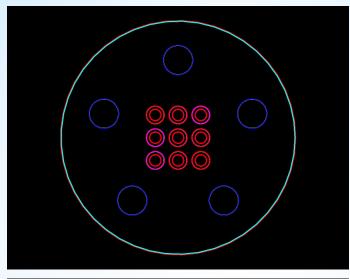


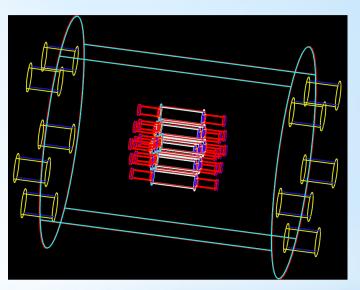

In order to draw conclusions more data about growing dates are required, ²¹⁰Po activity is still being built

AS 1kg samples results

More data are required to trace back the origin of the contamination in time

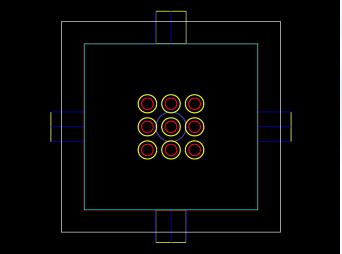
Measurements still ONGOING

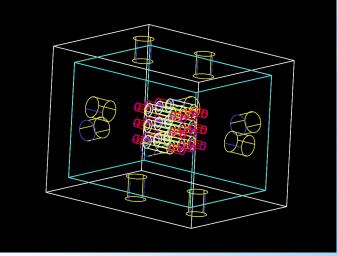


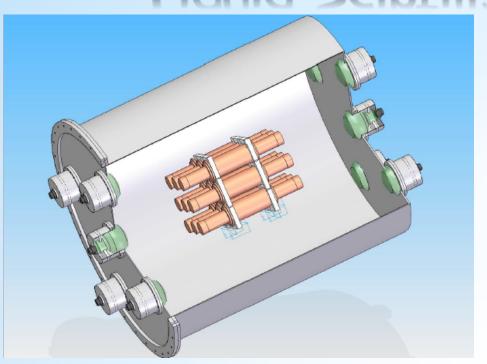


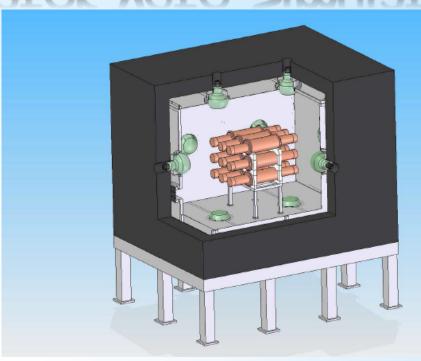
Updated Liquid Scintillator Veto Simulation

Two different designs have been considered:


LSVc






LSVb

LSVc consists of a large cylinder for the LS container (and whose preliminary results had been presented already at the previous committee meeting).

LSVb consists of a smaller LS container that could be installed in the same set-up configuration designed for ANAIS-112 (3x3 matrix of crystals), including the external lead shielding (15 cm).

Vessel: For LSVc stainless steel cylinder, 5-mm-thick, 60 cm scintillator thickness. For LSVb, it has been defined as the 1.5 mm thick stainless steel box prepared for the ANAIS-112 set-up, having external dimensions 1150 x 1125 x 1550 mm 3 .

Reflector: 0.5 mm reflector Lumirror.

Liquid scintillator medium: Linear AlkylBenzene (LAB). The total mass of scintillator is estimated to be 3.8 tons for LSVc and 1.7 tons for LSVb. Although it has not been considered in the simulation, 2 g/L 2,5-diphenyloxazole (PPO) will be added to the LAB as wavelength shifter.

Photomultipliers: Hamamatsu R5912, 8" diameter borosilicate glass. For both geometries, ten units are assumed: five PMTs at each end of the cylindrical vessel for LSVc, and one unit at each small face and two units at the four large faces for LSVb.

Shielding: no shielding has been considered for LSVc, but a 15 cm thick layer of

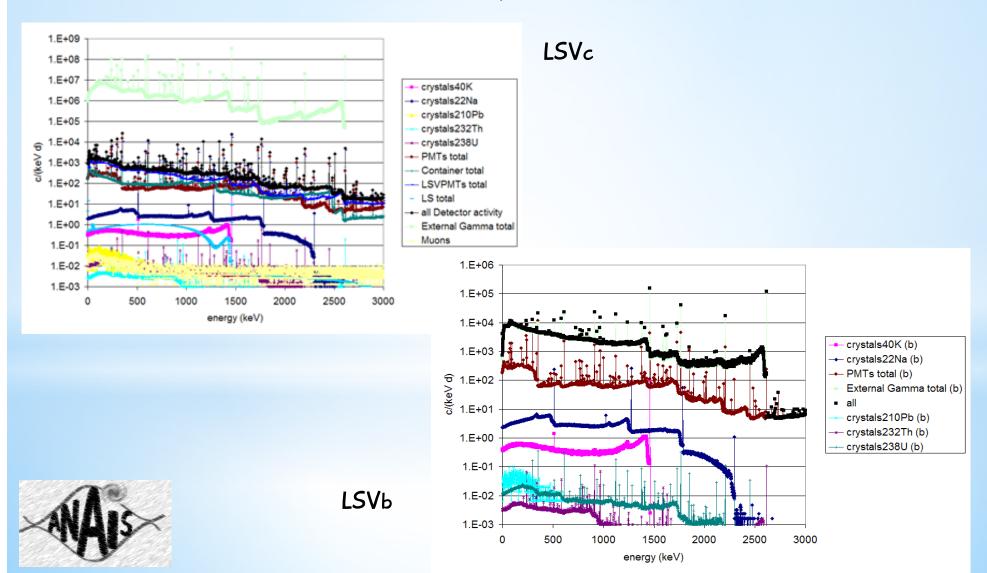
lead for LSVb.

CONTAMINATIONS CONSIDERED AT NaI CRYSTALS - D2

	Unit	⁴⁰ K	²³² Th	²³⁸ U	²²⁶ Ra	²¹⁰ Pb	²² Na	³ H
Crystal	mBq/kg	1.25 ± 0.11	$(0.7 \pm 0.1)10^{-3}$	$(2.7\pm0.2)10^{-3}$		0.70 ± 0.10	0.81 ± 0.05	0.09
PMTs	mBq/PMT	111 ± 5	20.7 ± 0.5	157 \pm 8	82.5 ± 0.8			

CONTAMINATIONS CONSIDERED AT LSV SYSTEM

	Unit	⁴⁰ K	²³² Th	²³⁸ U	²²⁶ Ra	⁶⁰ Co	Ref.
SS container	mBq/kg	<0.96	<0.54	<21	<0.57	2.8 ± 0.8	NEXT
PMTs	mBq/PMT	$\textbf{2150} \pm \textbf{126}$	339 ± 11	346 ± 105	652 ± 18	1.3 ± 2.2	SNOlab
LS (LAB)	mBq/kg	0.0031	4.1 10-6	1.2 10-5			JUNO


GAMMA AND MUON ENVIRONMENTAL FLUXES:

	Unit	⁴⁰ K	²³² Th	²³⁸ U
LSC, Hall B (2006)	γ cm ⁻² s ⁻¹	0.33 ± 0.01	0.85 ± 0.07	0.71 ± 0.12
LSC, Hall A (2010)	γ cm ⁻² s ⁻¹	0.15 ± 0.04	0.36 ± 0.23	0.55 ± 0.22

	Unit	Muon
LSC, Hall B	μ m ⁻² s ⁻¹	(5.04 \pm 0.06 (stat) \pm 0.25 (sys)) $10^{\text{-3}}$
LSC, Hall A	μ m ⁻² s ⁻¹	(4.71 \pm 0.06 (stat) \pm 0.24 (sys)) 10 ⁻³

LSVc detection rate is extremely dominated by the external gamma flux contributions, contribution in LSVb design is significantly lower

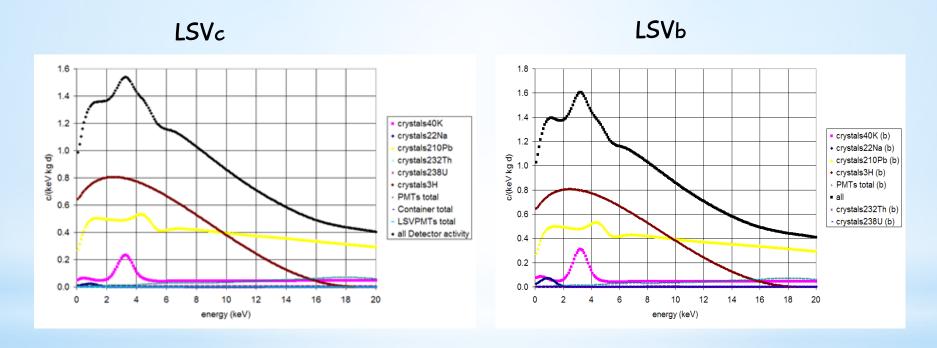
LSVc detection rate is extremely dominated by the external gamma flux contributions, contribution in LSVb design is significantly lower

The total trigger rate below 3 MeV for the LSV is of the order of 65 kHz in the LSVc (simulated without shielding) while it is below 100 Hz in the LSVb design.

Different energy thresholds for the LS triggering have been considered in the simulation: 500 keV threshold allows to reduce the trigger rate in a factor of 2 for both designs.

Different logic trigger conditions have been considered:

t: total spectra


a: events in anticoincidence among Nal modules

av: events in anticoincidence among NaI modules and LSV

av500: "same" with a 500 keV energy threshold in LSV system

Energy Spectra of the NaI(TI) modules for both designs in av trigger conditions, assuming external gamma backgrounds have been suppressed

Concerning the contribution at RoI from ^{210}Pb in crystals, it could be higher in case of a surface contamination. Assuming all the ^{210}Pb was on surface at a depth of 30 μm , the increase in the rate in the 1-6 keV region in comparison to a pure bulk contamination would be of a factor 1.6.

Total rate in the NaI(TI) modules for both designs in av trigger conditions in the 1-6 keV region

LSVc

1	5	V	h
L		v	D

	c/kg/d	% of total
Crystal 40K	4.7E-01	6.83
Crystal 232Th	5.6E-04	0.01
Crystal 238U	2.1E-02	0.31
Crystal 210Pb	2.4E+00	35.72
Crystal 3H	3.8E+00	55.78
Crystal 22Na	1.3E-02	0.19
PMTs	8.0E-02	1.16
LSV PMTs	1.5E-05	0.0002
Container	4.1E-06	0.0001
LS		
Muons		

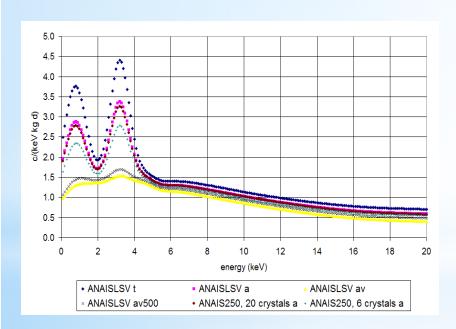
	c/kg/d	%
Crystal 40K	5.7E-01	8.19
Crystal 232Th	5.6E-04	0.01
Crystal 238U	2.1E-02	0.31
Crystal 210Pb	2.4E+00	34.88
Crystal 3H	3.8E+00	54.85
Crystal 22Na	4.2E-02	0.60
PMTs	8.2E-02	1.17
LSV PMTs	not simulated	
Container	not simulated	
LS	not simulated	
Muons	not simulated	
External Gamma	<0.19 (90%CL)	

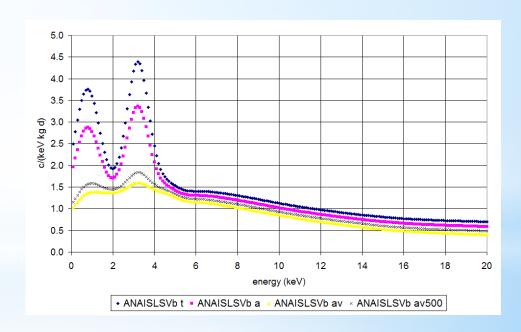
Concerning the contribution at RoI from ^{210}Pb in crystals, it could be higher in case of a surface contamination. Assuming all the ^{210}Pb was on surface at a depth of 30 μm , the increase in the rate in the 1-6 keV region in comparison to a pure bulk contamination would be of a factor 1.6.

Reduction factors (R.F.) at the very low energy region

Percentage of background remaining after anticoincidence (or anticoincidence + veto) in the 1-6 keV region

	R.F. (%) ⁴⁰ K from crystals	R.F. (%) ²² Na from crystals	R.F. (%) PMTs	R.F. (%) All (but Gammas)	R.F. (%) Gammas
3x3 modules (a)	69.0	62.4	62.3	83.7	68.8 (LSVc) 55.9 (LSVb)
3x3 modules + LSVc (av)	11.9	1.2	7.3	55.6	0
3x3 modules + LSVc (500 keV threshold) (av500)	15.5	5.7	29.3	59.1	5.2
3x3 modules + LSVb (av)	14.5	3.7	7.3	56.6	2.4
3x3 modules + LSVb (500 keV threshold) (av500)	20.5	11.0	31.1	61.3	16.5
4x5 modules (a)	62.7	55.1	45.9	77.9	
4x5 modules (6 inner crystals) (a)	48.6	39.8	32.5	70.3	




For the assumed background model, about 70% of the background obtained in anticoincidence for the 3×3 crystals configuration remains even after the vetoing effect of the LSV.

Comparing the reduction for the two veto systems, the loss of effectiveness in the small box veto is more important for ²²Na; the ⁴⁰K contribution is in both systems dominated by the EC decays to the ground state of the daughter, which cannot be vetoed

Low Energy Spectra of the NaI(TI) modules for both designs for t, a, av and av500 anticoincidence conditions. Spectra obtained in anticoincidence in the 4x5 modules set-up (ANAIS-250) are also shown

LSV_c LSV_b

We can conclude:

- -Operation of a LSV system without a lead (water) shielding is precluded due to the non-negligible contribution of the environmental gamma background at the region of interest and the high counting rate generated at the LSV. The inclusion of a 15 cm thick lead shielding allows to reduce the environmental gamma background contribution in the 1-6 keV below 0.04 c/(keV kg d) for an ideal LSV and to 0.11 c/(keV kg d) considering a 500 keV threshold for the LSV.
- -The increase in the rate at the region of interest when considering a small box instead of a larger cylindrical LSV is not very significant for the dominant background sources and it seems that it could be tolerated. Reduction factors are virtually the same for both LSV systems.
- -Assuming the activities of the last characterized detector (D2), for nine crystals with total mass of 112.5 kg the expected background rate is below 2 counts/keV/kg/d above 4 keV and of 2.5 counts/keV/kg/d in the region from 1 to 4 keV, which could be reduced at 14 counts/keV/kg/d by using a LSV.

D0/D1/D2 Background Model

 It has been completed and sent for publication to Eur. Phys.
 Journal C

http://arxiv.org/abs/1604.05587

 We need tritium in the bulk and ²¹⁰Pb surface contamination to explain the background in the low energy range

Eur. Phys. J. C manuscript No. (will be inserted by the editor)

Assessment of backgrounds of the ANAIS experiment for dark matter direct detection

J. Amaré^{1,2}, S. Cebrián^{a,1,2}, C. Cuesta^{1,2,3}, E. García^{1,2}, M. Martínez^{1,2,4}, M.A. Oliván^{1,2}, Y. Ortigoza^{1,2}, A. Ortiz de Solórzano^{1,2}, J. Pulmedón^{1,2}, M.L. Sarsa^{1,2}, J.A. Villar^{1,2}, P. Villar^{1,2}

¹Laboratorio de Física Nuclear y Astropartículas, Universidad de Zaragoza, Calle Pedro Cerbuna 12, 50009 Zaragoza, Spain
²Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s/n, 22880 Canfranc Estación, Huesca, Spain

³Present Address: Department of Physics, Center for Experimental Nuclear Physics and Astrophysics, University of Washington, Seattle, WA, USA

⁴Present Address: Università di Roma La Sapienza, Piazzale Aldo Moro 5, 00185 Roma, Italy Received: date / Accepted: date

Abstract A large effort has been carried out to characterize the background of sodium iodide crystals within the ANAIS (Annual modulation with NaI Scintillators) project. In this paper, the background models developed for three 12.5-kg NaI(Tl) detectors produced by Alpha Spectra Inc. and operated at the Canfranc Underground Laboratory are presented together with an evaluation of the background prospects for the full experiment. Measured spectra from threshold to high energy in different conditions are well described by the models based on quantified activities. At the region of interest, crystal bulk contamination is the dominant background source, Contributions from ²¹⁰Pb, ⁴⁰K, ²²Na and ³H are the most relevant. Those from ⁴⁰K and $^{22}\mathrm{Na}$ could be efficiently suppressed thanks to anticoincidence operation in a crystals matrix or inside a Liquid Scintillator Veto (LSV), while that from ²¹⁰Pb has been reduced by improving crystal production methods and ³H production could be reduced by shielding against cosmic rays during production. Assuming the activities of the last characterized detector, for nine crystals with a total mass of 112.5 kg the expected background rate is 2.5 counts/keV/kg/d in the region from 1 to 4 keV, which could be reduced at 1.4 counts/keV/kg/d by using a LSV.

1 Introduction

Sodium iodide crystals doped with Tl have been widely used as radiation detectors and, in particular, they have been applied in the direct search of galactic dark matter particles for a long time [1–5]. Among the several experimental approaches using NaI(Tl) detectors, DAMA/

LIBRA is the most relevant, having reported the observation of a modulation compatible with that expected for galactic halo WIMPs with a large statistical significance [6]. Results obtained with other target materials and detection techniques (like those from CDMS [7]. CRESST [8], EDELWEISS [9], KIMS [10], LUX [11], PICO [12] or XENON [13] collaborations) have been ruling out for years the most plausible compatibility scenarios. The ANAIS (Annual modulation with NaI Scintillators) project [14] is intended to search for dark matter annual modulation with ultrapure NaI(Tl) scintillators at the Canfranc Underground Laboratory (LSC) in Spain; the aim is to provide a model-independent confirmation of the annual modulation positive signal reported by DAMA/LIBRA using the same target and technique, but different experimental conditions affecting systematics. Projects like DM-Ice [15], KIMS [16] and SABRE [17] also envisage the use of large masses of NaI(Tl) for dark matter searches.

ANAIS aims at the study of the annual modulation signal using a NaI(Tl) mass of 112.5 kg at the LSC. To confirm the DAMA/LIBRA results, ANAIS detectors should be comparable to those of DAMA/LIBRA in terms of energy threshold and radioactive background: energy threshold lower than 2 keVee¹ and background at 1-2 counts/keV/kg/day in the region of interest (RoI) below 6 keVee. Several prototypes have been developed and operated at LSC using BICRON and Saint-Gobain crystals; all of them were disregarded due to an unacceptable K content in the crystal at the level of hundreds of ppb. Among them, the so-called ANAIS-0 detector [18-21], a 9.6 kg Saint-Gobain crystal similar to those of DAMA experiment, has to be highlighted because its successful background model [18] has been the

ae-mail: scebrian@unizar.es

¹Electron equivalent energy.

D3 Background Model

VERY PRELIMINARY:

CRYSTAL

 $1.6 \, \text{mBq/kg}^{210} \text{Pb}$

 $0.7 \, \text{mBq/kg}^{40} \text{K}$

 $0.09 \, \text{mBq/kg}^{3} \text{H}$

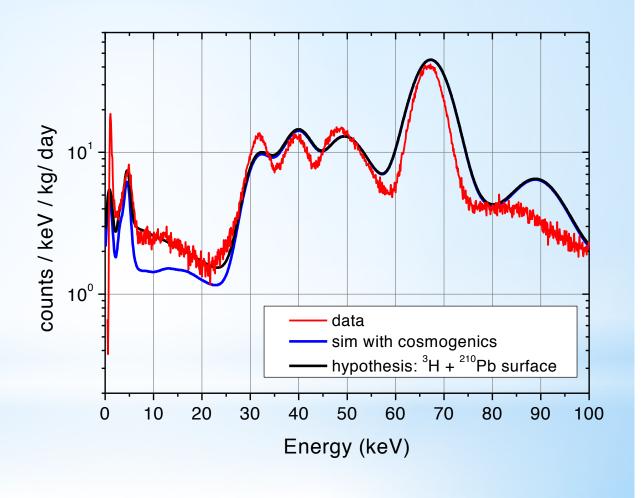
 $0.94 \, \text{mBq/kg}^{129} \text{I}$

U/Th chains in the NaI bulk

Cosmogenic backgrounds

PMTs

Upper bounds on:


Quartz window

Silicone pads

Copper housing

Residual Radon

Lead shielding

D3 Background Model

VERY PRELIMINARY CRYSTAL

 $1.6 \, \text{mBq/kg}^{210} \text{Pb}$

 $0.7 \, \text{mBq/kg}^{40} \text{K}$

 $0.09 \, \text{mBq/kg}^{3} \text{H}$

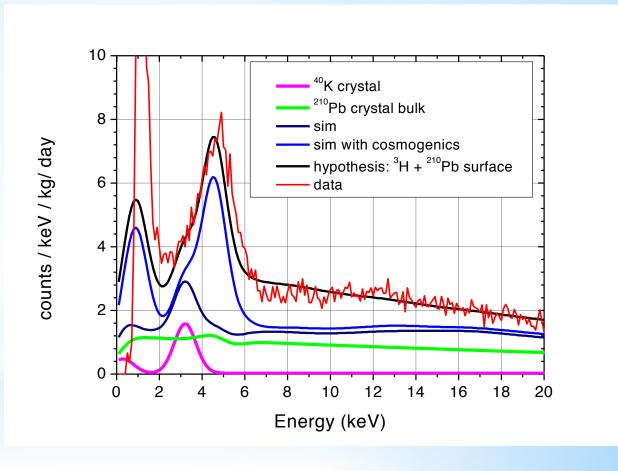
 $0.94 \, \text{mBq/kg}^{129} \text{I}$

U/Th chains in the NaI bulk

Cosmogenic backgrounds

PMTs

Upper bounds on:


Quartz window

Silicone pads

Copper housing

Residual Radon

Lead shielding

BEST Background Model

CRYSTAL

 $0.7 \, \text{mBq/kg}^{210} \text{Pb}$

 $0.65 \, \text{mBq/kg}^{40} \text{K}$

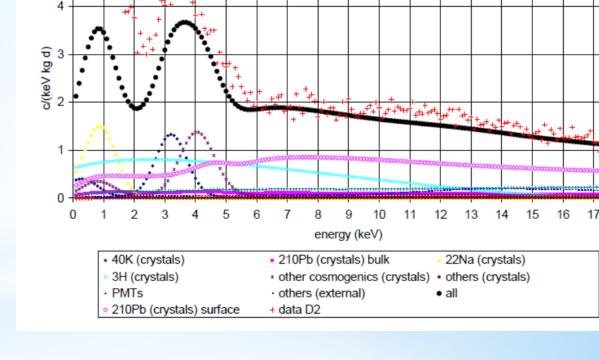
 $0.09 \, \text{mBq/kg}^{3} \text{H}$

 $0.94 \, \text{mBq/kg}^{129} \text{I}$

U/Th chains in the NaI bulk Cosmogenic backgrounds

PMTs

Upper bounds on:


Quartz window

Silicone pads

Copper housing

Residual Radon

Lead shielding

²¹⁰Pb bulk + surface ²¹⁰Pb surface contamination is a serious background contribution

BEST Background Model

CRYSTAL

 $0.7 \, \text{mBq/kg}^{\, 210} \text{Pb}$

 $0.65 \, \text{mBq/kg}^{40} \text{K}$

 $0.09 \, \text{mBq/kg}^{3} \text{H}$

 $0.94 \, \text{mBq/kg}^{129} \text{I}$

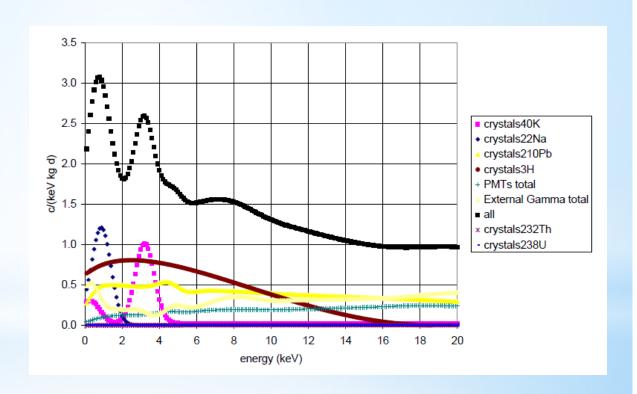
U/Th chains in the NaI bulk Cosmogenic backgrounds

PMTs

Upper bounds on:

Quartz window

Silicone pads


Copper housing

Residual Radon

Lead shielding

Anticoincidence Reduction in 3x3 matrix (ANAIS 112 set-up)

²¹⁰Pb bulk

Tritium would become very relevant contamination - >exposure to cosmics should be avoided

AS is using a shelter for cosmic rays that should reduce the activation of the crystals while being at Colorado, but it is small, only a few modules can be stored simultaneously

²¹⁰Pb issue is UNDER STUDY in collaboration with AS.

The 1kg samples will continue being measured to understand the evolution of the rate and, if possible, trace back the contamination origin

We are discussing with AS possible surface etching or polishing treatment to be applied to this 1 kg pieces of NaI(TI) in order to redo the alpha measurement at LSC

This could be done in about one month.

Building of D4, D5, and D6 modules (ordered already in 2015) is in pause.

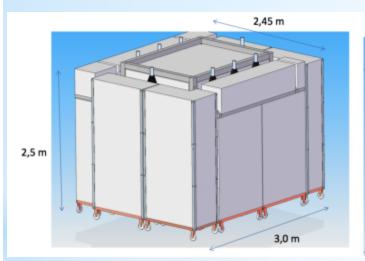
The crystals are already grown, but the modules have not been assembled. In the case the contamination could be removed from the surface, the reception of this three modules at LSC could suffer from only a few weeks' delay.

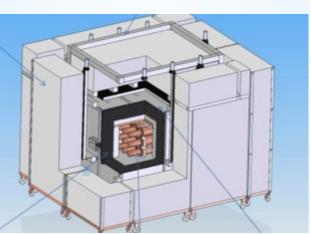
MULTIDARK project, funding these three crystals, has been extended till June 2017

We are finishing the estimate of the potassium content of the crystal D3 to decide if we return it back to Colorado for an upgrading of the detector (still to be discussed with AS) or the background in the Region of Interest could allow fulfilling the ANAIS background goals.

Reduction of potassium content would improve really the background below 6 keV, and if it is confirmed, a re-analysis of the limits allowed for other contaminants should be carried out. We need at least one month more of data to confirm potassium level in D3.

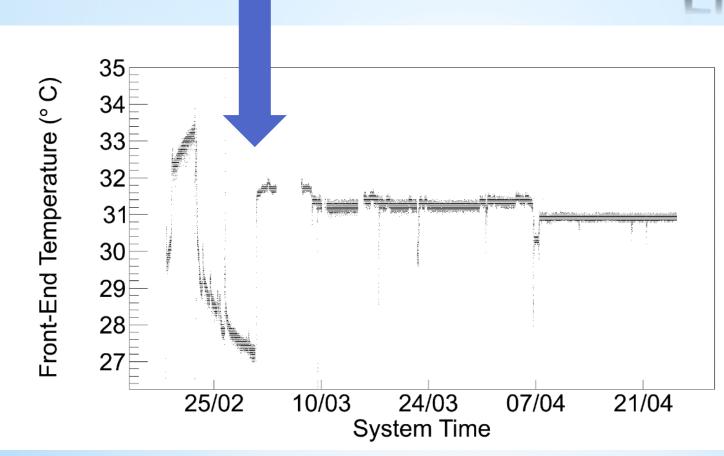
Since the last committee meeting, the Spanish call for research projects was open.


ANAIS included in his application the funds to design and install a LSV system for ANAIS.


We have also included in this application funding to carry out measurements of the Relative Efficiency Factor for scintillation in AS crystals in collaboration with P.S. Barbeau (Duke University).

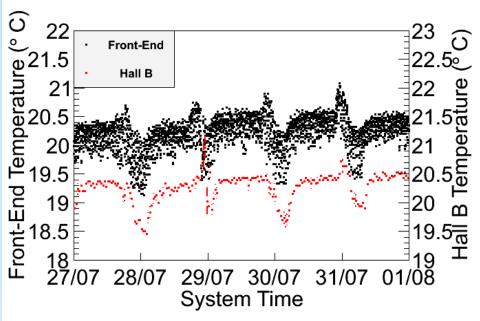
This call should be resolved in the second half of 2016.

The building of the Radon-free box and neutron shielding is ongoing.

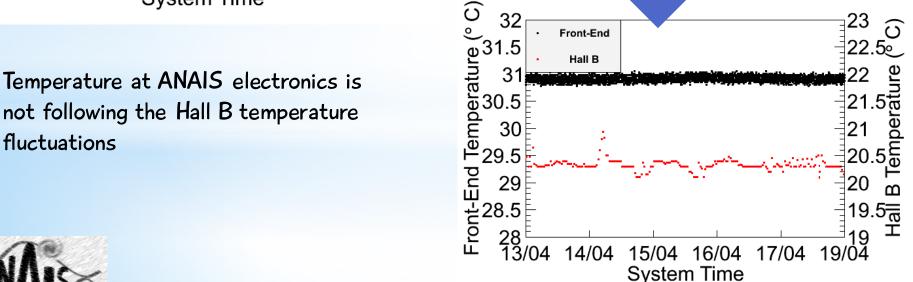

New Temperature Control @ ANAIS Electronics

Conditioned Room behind ANAIS hut for ANAIS Electronics

New Temperature Control @ ANAIS Electronics

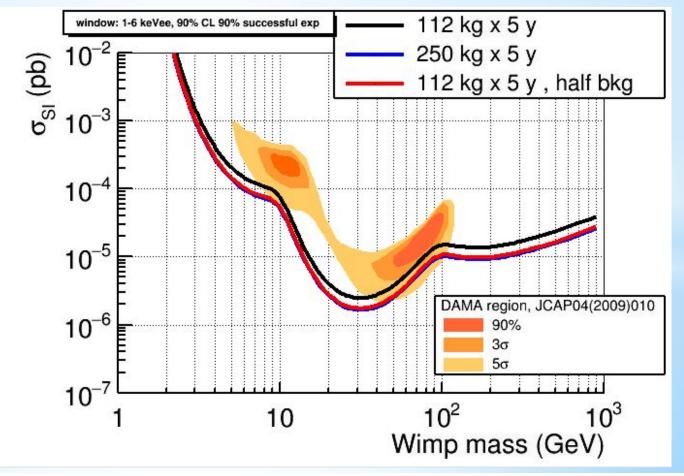


Temperature at ANAIS electronics is not following the Hall B temperature fluctuations


New Temperature Control @ AN

BEFORE

AFTER



Temperature at ANAIS electronics is not following the Hall B temperature

ANAIS SENSITIVITY PROSPECTS

- 1-6 keVee region / 5 years
- 90% C.L. signal in 90% of the carried out experiments
 (Following S. Cebrián et al., Astroparticle Physics 14, 2001, 339)
- D2 present background level


International contacts

JOINT DATA ANALYSIS among KIMS, DM-Ice and ANAIS

has been discussed

DM-Ice crystals will be installed at Yang-Yang laboratory, together with those of KIMS, amounting to 107 kg, along 2016.

Added to the 112.5 kg from ANAIS at LSC, a total mass of 220 kg would be available, allowing for a better sensitivity for the annual modulation

- ANAIS experimental schedule:
 - 112.5 kg (3×3 crystal matrix) of NaI taking data along 2016 (not by June)
 - Shielding, electronic front-end, DAQ and software, slow control ready for the full experiment
- Good quality Nal detectors from Alpha Spectra in terms of light collection, but background problems remain:
 - Outstanding light collection improving energy resolution and triggering at or even below 1 keVee, still working on acceptance efficiencies to confirm 1 keVee threshold
 - Potassium seems to have been reduced significantly in WIMPScint-III powder, but ²¹⁰Pb contaminations are not under control by AS
 - Additional 5 modules (funded by LSC and MultiDark) are waiting to be mounted till solving ²¹⁰Pb issue

