

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

LSC EXP-08 ArDM Status Report

ETHZ led collaboration with CIEMAT, LSC, CERN and others

> Christian Regenfus ETHZ

(On behalf of the ArDM collaboration)

First ton scale LAr detector in operation

Exploring the low energy frontier of the LAr technology at the ton scale

Plan of the presentation

- Introduction
- Data analysis and simulation
 - High statistics analysis of Run I data
 - Assessment of a events
 - Pulse-shape discrimination analysis
 - Measurement of optical parameters
 - Evaluation of backgrounds from screening results
 - Expected sensitivity

Hardware developments

- New TPC drift cage, HV system
- New radio-pure PMT bases
- Measures to upgrade the LY
 - Replacement of TPB coated surfaces
 - Implementation of ITO coated windows
 - ICP-MS measurements
 - Design of a cold charcoal trap
- Future plans
 - Upgrade schedule and double phase runs
 - Opportunities for depleted argon
- Conclusions

ArDM in a nutshell

- PSD and Ionization / scintillation ratio
- Localization: (fiducial volume, 3D imaging)
- Topology: (e.g. multiple elastic scatters from neutrons)

A.Rubbia J.Phys.Conf.Ser 39:129-132,2006.

Status of ArDM-1t: arXiv:1505.02443

A ton scale LAr DM experiment

Expectations!

- Serious contribution to searches of higher mass WIMPs!
- Design parameters for LAr G2 and G3 future facilities!

In the research focus:

- DUV properties of large LAr targets
- Neutron interactions
- ³⁹Ar PSD studies
- Classification of depAr batches

Operation of ArDM — Run I in single-phase LAr mode

Stable data taking over ~6 months – 3×10⁹ triggers recorded to disk 2015

Experiment at LSC (Canfranc / Spain)

Fully remotely controlled, e.g. from CERN

Safety: sophisticated PLC SC system

18th Meeting of the LSC Scientific Committee May 17th 2016

C. Regenfus ArDM 3.3 billion triggers – 215 TB raw data

⁸³Kr signals — LY

- main calibration tool

Advances in software efforts

- High statistics analysis of Run I data
- Evolution of MC model
- Evaluating backgrounds from a and neutron events
- Pulse-shape discrimination analysis
- Preparation towards double phase running
- ArDM sensitivity

The full LAr target (850kg active)

Looking into one of the main features of LAr - PSD

11 days data taking — 162M events plotted — no fiducial cuts

- Basic quality cuts
- 80% efficiency
- Mainly noise events

α events in more details

Sources for α events

Bi-Po analysis

²¹⁴ Bi	β	3.3 MeV	19.9 min
²¹⁴ Po	α	7.8 MeV	164.3 µs

- Evidence of ²¹⁴Po
- Low light yield (<0.5 pe/keVee)

PSD with a ton scale target

Nuclear recoils (NR) induced by neutrons from the ²⁵²Cf source detected in ArDM

NR and ER range in light signal slices

Gaussian fit in slices (ER band, ²⁵²Cf)

12

ER rejection power

NR signal region : $[m_{\text{NR}} - N\sigma_{\text{NR}}, m_{\text{NR}} + 3\sigma_{\text{NR}}], N = 3, 2, 1, 0$ **ER leakage probability** (*P*_L) : calculated from Gaussian **Rejection power :** $1/P_{\text{L}}$

High ER rejection power if light signal is large

Strongly dependent on the light signal, also on the desired NR acceptance

First demonstration of high background rejection by PSD at a ton-scale

MC efforts

Detector simulation developed and tuned with data of Run I

- MC data fully digitized
- Same reconstruction and analysis
 framework
- MC is in a good agreement with data, typically to better 10%
- Main features are reproduced

 Full optical photon ray tracing for DUV (scintillation) and visible (wave shifted) light

 Optical parameters tuned to data (scatt. length, absorption, refl. coefficients)

Screening results used for e-like and n-like MC to estimate backgrounds

Description of the LY by a few parameters

Light yield highest in the center — need large $\mathcal{R} \implies \lambda_{VUVAbs}$ must be short

More evidence from Co data (3 σ)

Scanning λ_{VUV} and \mathcal{R}

Optical parameters of the detector a priori not known

- Most important parameters: VUV light attenuation length in LAr, reflectivity of the reflector foil
- Data suggested attenuation of VUV light attenuation in LAr of ~50 cm
- · Generated Geant4 MC templates by scanning the parameters in the range
- VUVAbsL = [40cm,70cm], Refl = [83%, 99%]
- Bayesian fit was used to evaluate the best parameters matching LY to data

18th Meeting of the LSC Scientific Committee May 17th 2016

Posterior probabilities after marginalizing over the other parameters

18th Meeting of the LSC Scientific Committee May 17th 2016

C. Regenfus ArDM

Impact of long attenuation length on LY

Most important parameters:

- VUV light attenuation length in LAr (λ_{VUVAbs}), and reflectivity of the reflector foil (\mathcal{R})

Set λ_{VUVAbs} to 200cm

- Assuming λ_{VUVAbs} = 200 cm produces light yield a factor of 2 larger than in data
- Need to scale LY by 40% to reach similar light yield as in data
- Need additional 30% smearing to come close <u>no match of MC and data</u>
- Best agreement achieved with $\lambda_{\text{VUVAbs}} \approx 55 \text{ cm}$

Best parameters set

Verification of parameter scan is ongoing with Kr data

Exploring external y backgrounds

Data from open — close top cover (difference spectrum)

Spectrum well described by ²³⁸U, ²³²Th and ⁴⁰K contributions

Large target feature:

Self-shielding

Spectrum extends into higher energy range

(mult. y absorption)

Estimate comparable with LSC parameters (Ge measurement)

A. Bettini, Eur. Phys. J. Plus 127 (2012) 112.

	U-238	Th-232	K-40	Total
LSC	0.68 ± 0.17 cm ⁻² s ⁻¹	0.38 ± 0.02 cm ⁻² s ⁻¹	$0.17 \pm 0.03 \text{ cm}^{-2} \text{ s}^{-1}$	1.23 ± 0.17 cm ⁻² s ⁻¹
ArDM	0.659 cm ⁻² s ⁻¹	0.146 cm ⁻² s ⁻¹	0.036 cm ⁻² s ⁻¹	0.806 cm ⁻² s ⁻¹

18th Meeting of the LSC Scientific Committee May 17th 2016

Screening results

Detector components screened using HPGe at LSC

Screened components

Sample	Description	Mass [kg]	Time [d]
PMT glass	PMT – low radioactive glass (LRI)	0.7467	45
PMT metal	PMT – Internal electrodes (metal)	0.197	49
PMT base	FR-4 boards $-PMT$ bases	0.0366	50
SS struct	Stainless steel $- PMT$ support	2.077	62
SS clamp	${ m Stainless \ steel-PMT \ clamps}$	0.2216	36
SS rod	Stainless steel $-$ threaded rods	0.0606	62
PE clamp	HDPE - PMT clamps	0.0632	57
PE shield	External HDPE - Neutron shield	0.8378	33
HVres	Ceramic HV resistors	0.2427	21
Perlite	Perlite isolation material	0.1163	45

Results

Secular equilibrium assumed for U and Th chains

Sample	²³⁸ U [ppb]	²³⁵ U [ppb]	²³² Th [ppb]	⁴⁰ K [ppb]	⁶⁰ Co [kru]	-
PMT glass	$51.7{\pm}0.3$	$0.70{\pm}0.02$	$28.3{\pm}0.5$	$1.7 {\pm} 0.07$	< 0.2	-
PMT metal	$14.7{\pm}0.3$	$0.71{\pm}0.04$	$18.4{\pm}0.7$	$12{\pm}0.4$	—	_
PMT base	746 ± 1	$9.0{\pm}0.1$	$2720{\pm}10$	$64{\pm}0.7$	—	
SS struct	$0.257{\pm}0.002$	$<\!0.05$	$1.57{\pm}0.01$	< 0.04	$1.24{\pm}0.01$	Most dirty material
SS clamp	<0.6	$1.0{\pm}0.3$	<3	< 0.1	$2.0{\pm}0.2$	will be replaced for
SS rod	<2	$1.18{\pm}0.08$	<6	$0.18{\pm}0.01$	$0.76{\pm}0.02$	/ Run II
PE clamp	$2.85{\pm}0.05$	$<\!0.2$	$23.3{\pm}0.6$	$0.3{\pm}0.07$	< 0.5	
PE shield	$0.34{\pm}0.06$	< 0.03	$2.41{\pm}0.03$	$0.06{\pm}0.01$	< 0.06	_ /
HVres	118 ± 1	$1.92{\pm}0.02$	466 ± 1	6.7 ± 0.06	_	
Perlite	$3650{\pm}20$	$61{\pm}1$	$13000{\pm}100$	$3400{\pm}47$	_	Thanks to Iulian !!

18th Meeting of the LSC Scientific Committee May 17th 2016

e - like spectra

Based on MC response from screening

¹⁸th Meeting of the LSC Scientific Committee May 17th 2016

Internal neutron background simulation

- Screening results verified
- External γ flux understood

Neutron BG simulation

BG sources under control

- in view of next runs

New detector configurations

- Internal neutron shield (Borotron)
- New PMT bases with radio pure material
- HV resistors also radio pure
- PMMA windows

1M neutron events generated for each combination :

(detector component) × (isotope) × (emission type)

Four cuts applied to the generated n events

- Fiducial cut : FV with 483 kg target mass
- Inelastic scattering cut : accompanying γ's
- Energy cut : 50 < E_r < 100 keV_{nr}
- S2-multiplicity cut : multiple scatter n's

Irreducible neutron background rate

Remaining neutron events after the cuts are identified as "irreducible"

• Irreducible rate =

irreducible fraction (MC) × neutron production rate from each component

Neutron production rate	- computed using SOURCES4C
-------------------------	----------------------------

Det comp	cont.	[ppb]	Volume		neutron rate	[n/s/cm ³ /ppb]	
Det. comp.	^{238}U	232 Th	$[\mathrm{cm}^3]$	238 U sft	238 U ant	232 Th sft	232 Th ant
Tank	3.87	4.40	144566	$1.1 imes 10^{-10}$	$3.9 imes10^{-11}$	$9.8 imes 10^{-16}$	$5.2 imes 10^{-11}$
Top flange	3.87	4.40	37947	$1.1 imes 10^{-10}$	$3.9 imes10^{-11}$	$9.8 imes10^{-16}$	$5.2 imes10^{-11}$
PMT glass	51.68	28.32	8152	$3.0 imes10^{-11}$	$1.5 imes10^{-10}$	$2.7 imes10^{-16}$	$6.3 imes10^{-11}$
PMT electrode	14.70	18.36	591	1.1×10^{-10}	$3.9 imes10^{-11}$	$9.8 imes10^{-16}$	$5.2 imes 10^{-11}$
Inner n shield	0.51	1.09	308473	$1.4 imes 10^{-11}$	$9.5 imes10^{-11}$	$1.2 imes 10^{-16}$	$3.6 imes10^{-11}$

irreducible neutrons / day						
summed	over all is	otopes and p	rocesses			
Dot comp	emitted	irr. in RoI	irr. after cuts			
Det. comp.	n/day	n/day	n/day			
Tank	9.97	0.06	0.0095			
Top flange	2.62	0.04	0.0049			
PMT glass	7.65	0.14	0.0225			
PMT electrode	0.16	0.00	0.0004			
Inner n shield	2.52	0.03	0.0071			
Total	22.92	0.27	0.0446			

Irreducible rate : 0.045 n/d (new detector configuration)

50 < E_r < 100 keV_{nr}

483 kg target mass

Projected ArDM sensitivity

Hardware upgrades and developments

New detector layout

HV feedthrough (max. 100 kV)

26

Extraction grid-anode window assembly

Linear motion feedthroughs **CF** flange • with ports Lever arm Base plate 0 0 0 Spacer/holder **Extraction grid-anode** window assembly

New movable hanging system

- Hanging at three points independently movable by linear motion feedthroughs
- Position and horizontality of the extraction grid-anode assembly adjusted with respect to the LAr surface
 - LAr level measured in submillimeter precision at three points as well

All the mechanical parts have been built at CIEMAT ready for installation

Extraction grid ready at CERN

HV system components

System capable of up to 100 kV is ready to be installed

- Feedthrough / Power supply / 25-m-long cable / Control software
- Tested at CERN in LAr up to 100 kV
- Control software to be integrated in the ArDM control system

100-kV power supply

Test at CERN

Development of new radiopure PMT bases (CIEMAT)

R&D

considered options

CUFLON chosen

PCBs expected to be delivered very soon

CUFLON (PTFE + copper)

XT/duroid 8000 (PEEK + copper)

PCB layout

- SMD COG components
- Improved layout reducing inductances

Measures to increase the light yield

- For next runs we retain the existing light-readout system based on 24 8" PMTs
- Reduction of the VUV absorption in LAr
 - ICP-MS measurement on the gaseous argon in the bottle
 - Cold charcoal trap
 - Use of argon from another supplier (CERN LAr OK)
 - Filling procedure
- Updated light collection system
 - New reflector foils freshly coated with TPB
 - ITO/TPB-coated PMMA windows 4π coverage with a uniform TPB layer

Fabrication of new main reflectors

The entire TPB surface is renewed

3M Vikuiti™ Enhanced Specular Reflector Film (ESR)

- Multi-layer optical film technology
- Plastic specular reflector having high reflectivity
- 13 reflector foils + 7 spare (20 cm x 120 cm)

TPB coating at CIEMAT

- Large evaporator developed for ArDM
 - 13 crucibles in series
- Coating thickness 200 µg/cm²

18th Meeting of the LSC Scientific Committee May 17th 2016

Coated foil

LY improvement

Large ITO/TPB coated PMMA windows— a R&D project at CERN

Immersed in LAr Separating volumes - Defining electrical potentials - HV rigidity Spark-protection - Definition of fiducial volumes - Shield against bubbles Segmented structures possible (transparent field cage) Dielectric rigidity ~ 0.8 **TPB** evaporated Dimensions ~ m MV/mm **ITO layers sputtered** (both sides) High transparency required at Acrylic 420nm, the emission range of TPB glass (hard coated) ITO coatings done: Sputtering facility at CERN Industry (Visiontek UK) Light read out system (e.g. PMTs, SiPMs...) ITO coating is industrial standard - but limited to smaller sizes ~ 0.5 m

The coaling is industrial standard - but infined to smaller sizes, ~0.5m
Glueing possible (ACRIFIX® 2R0190) - solvent welding - necessary?
R&D project started autumn 2015 - aiming $1x1m^2$ plates (thickness $O \sim cm$)

TPB: evaporator built at CERN

Industrially manufactured ITO coated plates

800 x 650 mm²

1m open cryostat @ CERN ArDM clone

- Visiontek Systems Ltd. UK
- 10mm Acrylic plates 0.8 x 0.65 m² (largest currently available)
- Both faces coated
- Hard coated PMMA substrate used
- Optimum layer thickness for 420nm transparency

Mechanical and resistivity test

- Mechanical, electrical tests OK
- Stable conductivity
- Optical inspection after temperature cycle very satisfying

- conductivity tests done at 300K ... 87K
- 4-point R measurement probing the entire surface
- ohmic behavior confirmed (I-U curves OK)

18th Meeting of the LSC Scientific Committee May 17th 2016

Optical tests @ 300K — different samples small fraction of absorption in the ITO layer

TPB coating

New large size evaporator commissioned for the ArDM windows (~75 cm dia.)

Coating parameters :

Circular arrangement of 6 crucibles

0

- Target : ~100 µg/cm²
- Efficiency : ~18% (deposited TPB/evaporated)

Calculation of TPB thickness:

rms: ~2% over entire area

00

Coating result tests

PMMA test disc of the same size (without ITO) coated

Rectangular "holes" due
 to the sample Al foils (for weight measurement)

Effective TPB thickness : 107 ± 4 µg/cm² RMS ~15% (target ~100 µg/cm²)

оL

0.2 0.4

0.6 0.8

1

1.2

TPB layer weight on foil [mg]

2

1.4 1.6 1.8

Mechanics

18th Meeting of the LSC Scientific Committee May 17th 2016

ICP-MS measurement on argon

To identify the origin of the short attenuation length

Good precision – ~2% RSDs

Goal: measurements on the ArDM gaseous argon sample

ICP-MS measurement on argon

- Analysis of argon requires special treatment
 - Argon is used as buffer in standard analyses
- Feasibility under study first attempt carried out (gas of similar type)

Chromatographic separation of radioactive noble gases from xenon arXiv:1605.03844v1

Plans for 2016

Opportunities with depleted argon

³⁹Ar depleted argon (DepAr)

- DarkSide collaboration is pioneering the production
- Presently 150 kg
- Recently qualified in a 50 kg LAr detector

y background MC (fiducialisation)

• A depletion factor of 1/1400 was found with respect to atmospheric argon

Promising for next generation LAr DM detector – have to be verified for a large quantity (~10 ton)

ArDM facility can be used

Projected ³⁹Ar sensitivity of ArDM for a 3σ measurement

Characterization of depleted argon

Measurement on 10⁻⁵ level feasible — improvements, e.g. more sophisticated analysis (spectral fit)

Conclusions and outlook

Analysis efforts of Run I data yield crucial information on next steps

- Solid frameworks for data analysis and detector simulation generated
- The basic performance of the detector is further confirmed
- PSD, e-like backgrounds, n-like backgrounds: OK
- LY needs to be improved
- · 2pe/keV starts to be interesting
- · Exploration of fundamental parameters for large LAr facilities
- · Tuning of parameters indicate a relatively short DUV absorption length

• Hardware developments and preparation towards 2 phase operation advanced

- · Strategy of combined measures to restore LY seems very reasonable
- · Many additional improvements of inner detector parts
- · Light read out upgrade planned for later (after Run II)
- Presently preparing double phase Run II scheduled for 2016
 - · Clear plan of next steps of the project identified
 - Preparation, commissioning for double phase operation this summer
 - Double phase LAr run planned for 2016
- 2017 and beyond
 - Accumulate statistics further hardware upgrades planned
 - Facility available for sensitive depleted argon studies (sensitivity level down to 10⁻⁵)
 - Full scale demonstration at the ton-scale is a necessary step towards 10-ton scale and beyond

The ArDM Collaboration thanks LSC and its staff, as well as the Scientific Committee for their continuous support.

Backup

Requests to the lab

We appreciate very much the installation of a radon abatement system

Tent needed for next experimental intervention with connection to RAS

Evaluating installation of a LAr recuperation dewar into Hall A

Recuperation dewar

Cryogenic system upgrade (under evaluation)

