The production of ¹⁹F in AGB stars: observational and theoretical problems

C. Abia et al.

INAF-OAC, Teramo INFN, Naples NOAO, Tucson OCA, Nice

Universidad de Granada

> 19 F is a fragile element easily destroyed by p & α captures and difficult to observe in astronomical objects

Origin not very well known...

- 1. v-induced spallation in SN II (Woosley et al. 1990)
- 2. AGB stars (Forestini et al. 1992)
- 3. Hydrostatic He-burning in heavy mass-losing WR

(Meynet & Arnould 2000)

4. He + CO WD mergers (Longland et al. 2011)

→ Sources 1 & 4 seem to be discarded as significant ¹⁹F contributors

...Only AGB stars show observational evidence of F production, (Jorissen et al. 1992) confirmed by observations in post-AGB stars

and planetary nebulae (Werner et al. 2009; Zhang & Liu 2005; Pandey et al. 2008; Otsuka et al. 2011)

WZ Cas: a typical AGB carbon star

$$T_{eff} = 2800 \text{ K}, [Fe/H] = 0.0$$

 $C/O = 1.01$

$$[F/Fe] = +0.95 \pm 0.18$$

AGB stars: "the laboratory for nucleosynthesis"

AGB stars: "the laboratory for nucleosynthesis" (not a scale)

Sequence of processes that lead to F production

Gorielv, S., Jorissen, A., Arnould, M. 1989

$$^{14}N(\alpha, y)^{18}F(\beta^{+})^{18}O(p, \alpha)^{15}N(\alpha, y)^{19}F$$
 $^{14}N(p, p)^{14}C$
 $^{13}C(\alpha, p)^{16}O$

- 1. F & s-elements are produced simultaneously
 - secondary: ¹³C produced in the H-burning shell
 - primary: ¹³C produced in the He-intershell
- 2. Large [F/Fe] are predicted in metal deficient AGBs

Expected ¹⁹F & s-elements enhancements for different Z

Fluorine in metal deficient AGB C-stars

The problem: too much ¹⁹F at low metallicities

Possible solutions:

- ✓ Systematic errors in the observational analysis
- ✓ Chemical evolution: initial F abundance
- ✓ Models of AGB stars
- **✓** Nuclear reaction rate uncertainties
- **√**

Cristallo et al. (2014) A&A 570, A46

Table 1. Sources of the reaction rates relevant for fluorine nucleosynthesis.

	Reaction rate	Old source	New source		
	1 Proton captures	100 100 100 100 100 100 100 100 100 100			
%	$^{14}N(p,\gamma)^{15}O$	Formicola et al. (2004)	Adelberger et al. (2011)		
%	$^{15}N(p,\gamma)^{16}O$	Angulo et al. (1999)	Leblanc et al. (2010)		
%	$^{17}O(p,\gamma)^{18}F$	Angulo et al. (1999)	Scott et al. (2012)		
o	$^{18}O(p,\gamma)^{19}F$	Angulo et al. (1999)	Iliadis et al. (2010)		
ı	$^{15}N(p,\alpha)^{12}C$	Angulo et al. (1999)	Angulo et al. (1999)		
	$^{17}O(p,\alpha)^{14}N$	Angulo et al. (1999)	Iliadis et al. (2010)		
	$^{18}O(p,\alpha)^{15}N$	Angulo et al. (1999)	Iliadis et al. (2010)		
	$^{19}\text{F}(p,\alpha)^{16}\text{O}$	Angulo et al. (1999)	La Cognata et al. (2011)		
	α captures				
	$^{14}\mathrm{C}(\alpha,\gamma)^{18}\mathrm{O}$	Caughlan & Fowler (1988)	Lugaro et al. (2004)		
	$^{14}N(\alpha,\gamma)^{18}F$	Görres et al. (2000)	Iliadis et al. (2010)		
	$^{15}N(\alpha,\gamma)^{19}F$	Angulo et al. (1999)	Iliadis et al. (2010)		
	$^{18}O(\alpha, \gamma)^{22}$ Ne	Giesen et al. (1994)	Iliadis et al. (2010)		
	19 F(α ,p) 22 Ne	Ugalde (2005)	Ugalde et al. (2008)		
	$^{13}C(\alpha,n)^{16}O$	Drotleff et al. (1993)	Heil et al. (2008)		

2σ percentage cross section upper & lower uncertainties at different T and corresponding % fluorine ratio variations

	2σ (T	$r_8 = 1$)	$2\sigma (T_8)$	3 = 2.5	Δ [F/Fe] (% var.)	$\Delta [F/\langle s \rangle$] (% var.)
Reaction rate	Upper	Lower	Upper	Lower	Upper	Lower	Upper	Lower
$^{14}N(p,\gamma)^{15}O$	10	10	8	8	<u>-3</u>	+5	-3	+3>
$^{15}N(p,\gamma)^{16}O$	15	15	15	15	-1	-2	-3	-2
$^{17}O(p,\gamma)^{18}F$	15	15	20	20	0	-2	-3	0
$^{18}O(p,\gamma)^{19}F$	30	30	30	30	-2	-3	-1	-3
$^{15}N(p,\alpha)^{12}C$	20	20	15	15	-3	+1	-3	-3
$^{17}O(p,\alpha)^{14}C$	15	15	6	6	-2	-2	-1	0
$^{18}O(p,\alpha)^{15}N$	8	8	8	8	+1	-2	+3	-1
$^{19}\text{F}(p,\alpha)^{16}\text{O}$	35	35	35	35	0	-1	4	4
$^{14}\text{C}(\alpha,\gamma)^{18}\text{O}$	100	84	100	62	-2	0	-3	-2
$^{14}N(\alpha,\gamma)^{18}F$	20	20	10	10	-1	-1	+3	-1
$^{15}N(\alpha,\gamma)^{19}F$	100	50	15	15	<u>_3</u>	-2	0	±5>
$^{18}\text{O}(\alpha,\gamma)^{22}\text{Ne}$	70	50	70	50	-3	+1	4	-5
19 F $(\alpha, p)^{22}$ Ne	100	100	50	50	-5	+2	-2	+4
$^{13}C(\alpha,n)^{16}O$	25	25	25	25	3	+7	-1	+3

Cristallo et al. (2014)

Changes in the main reaction rates (within uncertainties) affecting F are not enough: ${}^{15}N(\alpha,\gamma){}^{19}F$ is the most sensitive

Tests above current experimental uncertainties

Table 3. Scaling factors sf of the computed tests with the corresponding ¹⁹F and F/ $\langle s \rangle$ surface ratios with respect to the reference case.

Reaction rate	sf	$R(^{19}F)$	$R(F/\langle s \rangle)$
$^{13}C(\alpha,n)^{16}O$	0.01	4.70	2.80
$^{13}C(\alpha,n)^{16}O$	100	0.62	0.67
$^{14}\text{C}(\alpha,\gamma)^{18}\text{O}$	0.01	1.03	1.59
$^{14}\text{C}(\alpha,\gamma)^{18}\text{O}$	100	1.04	1.61
$^{14}N(\alpha,\gamma)^{18}F$	0.01	3.03	5.14
$^{14}N(\alpha,\gamma)^{18}F$	100	0.64	1.10
$^{15}N(\alpha,\gamma)^{19}F$	0.01	0.11	0.12
$^{15}N(\alpha,\gamma)^{19}F$	100	0.96	1.50
$^{18}O(\alpha,\gamma)^{22}Ne$	0.01	2.21	2.01
$^{18}\mathrm{O}(\alpha,\gamma)^{22}\mathrm{Ne}$	100	0.52	0.52
19 F(α ,p) 22 Ne	0.01	1.05	1.19
19 F $(\alpha,p)^{22}$ Ne	100	0.08	0.14

Models with a strongly reduced $^{15}N(\alpha,\gamma)^{19}F$ matches the observations at low metallicity BUT then models and observations disagree a solar metallicities

Fractional contribution of the different resonances and DC to the $^{15}N(\alpha,\gamma)^{19}F$

The only other reaction able to significantly change the F abundances is the $^{19}F(\alpha,p)^{22}Ne$, but it is expected to work efficiently in stars $M>4~M_{\odot}$

Summary

- ➤ Abundance measurements of ¹⁹F in metal deficient low mass AGB stars disagree with theoretical models.
- ➤ Varying current nuclear rates within 2σ standard deviations, the surface ¹⁹F abundances change less than 10%.
- ightharpoonup Reducing the $^{15}N(\alpha,\gamma)^{19}F$ rate or increasing the $^{19}F(\alpha,p)^{22}Ne$ rate by a large amount has the largest impact on the ^{19}F abundance. Experimental measurements at stellar energies of these rates are desirable (ERNA, CUNA?).
- > Current models for ¹⁹F production in AGB stars have to be revised

The abundance ratio [F/Fe] is almost insensitive during the C-rich AGB phase to the initial F abundance

time

