A nuclear astrophysics facility for the LSC.

The **sources of neutrons** in the stars and other reactions of astrophysical interest

L.M. Fraile, GFN-UCM

C. Abia, A. Algora, J. Benlliure, R. Caballero, F. Calviño,
D. Cano-Ott, I. Domínguez, L.M. Fraile,
M.B Gómez-Hornillos, M. Hernanz, I. Irastorza,
M.D. Jordán, J. José, R. Longland, G. Luzón,
T. Martínez, B. Olaizola, A. Parikh, J.L. Taín, J.M. Udías

Letter of Intent

Canfranc Underground Nuclear Astrophysics

EoI-12-2009-CUNA

The s-process

The origin of heavy elements in the solar system

Stellar evolution: s-process

Fraile

 ✓ ²²Ne(α,γ)²⁶Mg reaction also has impact on n flux
 ✓ Improved ²²Ne + α reaction rates based on new experimental information since NACRE and Jäger et al.

✓ Computational method [22]

- Much improved uncertainties
- Changes for AGB starts: increase of production by up to a factor of 2 for higher masses.

PHYSICAL REVIEW C 85, 065809 (2012)

LM Fraile – Feb 2016

Measurements

Cross-sections

\rightarrow parameterized models

- → Typical stellar T (10⁷-10¹⁰ K) and Coulomb barrier translates into very low LAB energies (0.001-1 MeV): Gamow peak
- → Cross-sections are extremely small $(10^{-12} 10^{-20} \text{ barn})$

 \rightarrow Low energies resonances may appear

\checkmark Measure at (close) the relevant E

- → Requires high luminosity (beam current)
- → Requires large signal/noise ratio
- \rightarrow Extrapolations

Possibilities at ground level exhausted

LM Fraile – Feb 2016

Solution: going underground

✓ Background sources

- → Cosmic ray muons
- → Muon-induced neutrons & radioactivity
- → Rn and A=210 Pb-Bi-Po daughters
- \rightarrow Gamma and n emission from materials
- \rightarrow Rn emanation from materials
- \rightarrow Beam induced reactions

- \rightarrow Cosmic rate reduction
- \rightarrow Significant below 1000 mwe
- \rightarrow Additional background reduction

LUNA 400kV - LNGS

LM Fraile – Feb 2016

✓ Second underground facility

- \rightarrow one is not enough to measure all the important reactions in a reasonable time frame
- → independent confirmation of the results is always important, so even if LUNA could measure everything, more facilities are needed
- Expert committee (of ESF) statement in Long Range Plan for Nuclear physics:

"The effort to put into operation a machine of several MV in a European deep underground laboratory should be considered with the highest priority. This could be achieved in the next three to five years with the opportunity to measure one or two key reactions within the next decade. Considering the high scientific interest in measuring several more nuclear reactions, the case could be made to complete the programme with a second facility designed for a complementary set of measurements."

✓ Underground accelerator-based facility at LSC

- \rightarrow Ideal location: significant cosmic rate reduction below 1000 mwe
- \rightarrow Competitive at the world scale
- \rightarrow Impact on visibility of LSC as a whole

✓ Questions towards construction and implementation:

 \rightarrow Ideal energy

- measurements at low energy
- matching high energy /surface reactions
- resonances/tails can be relevant
- \rightarrow Detection techniques
 - Can we achieve the sensitivity with "standard" detectors?
- \rightarrow Background level
 - Limiting factor (beam induced, rock, concrete ...)

Letter of intent

L.M. Fraile (spokesperson), B. Olaizola, J.M. Udías Grupo de Física Nuclear, Universidad Complutense de Madrid, Madrid, Spain

J. José, R. Longland, <u>A. Parikh</u> *GAA, Universitat Politecnica de Catalunya, Barcelona, Spain*

<u>M. Hernanz</u>, J. Isern Institut de Ciencies de l'Espai-CSIC, Bellaterra, Spain

C. Abia, <u>I. Domínguez</u> *Universidad de Granada, Granada, Spain*

F. Calviño, <u>B. Gómez-Hornillos</u>, *GREENER, Universitat Politecnica de Catalunya, Barcelona, Spain*

<u>D. Cano</u>, T. Martínez Centro de Investigaciones Energéticas y Medioambientales, Madrid, Spain

J. Benlliure, M. Caamaño Universidad de Santiago de Compostela, Santiago de Compostela, Spain

A. Algora, D. Jordán, J.L. Taín Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

I. Irastorza, <u>G. Luzón</u> Lab. de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain

Global support from community

- \rightarrow C. Iliadis (UNC CHapel Hill, USA)
- \rightarrow F.-K. Thieleman (U Basel, Switzerland)
- \rightarrow H. Leeb (TU Wien, Austria)
- → J. Lattanzio, M. Lugaro (Monash, Australia)
- → T. Kajino (U Tokyo, Japan)
- \rightarrow B. Fulton, A. Laird (U York, UK)
- \rightarrow S. Harissopoulos (INP Athens, Greece)
- \rightarrow N. Soic (Zagreb, Croatia)
- \rightarrow B. Davids (TRIUMF Vancouver, Canada)
- \rightarrow S. Bishop (TUM Munich, DE)
- \rightarrow L. Trache (NIPNE Bucharest, RO)
- \rightarrow K.-L. Kratz (MPI Mainz, DE)
- → D. Bemmerer (HZDR Dresden, DE)
- \rightarrow Z. Fülöp, G. Gyurky (ATOMKI Debrecen, HU) \rightarrow T. Motobayashi (RIKEN, Japan)
- \rightarrow R. Tribble, C. Bertulani (Texas A&M, USA)

- \rightarrow M. Smith, D. Bardayan (Oak Ridge, USA)
- → A.P de Jesús, D. Galaviz (CFNUL, Lisbon, PT)
- \rightarrow F. Hammache (IPN Orsay, FR)
- \rightarrow A. Coc (CNSMN Orsay, FR)
- \rightarrow M. Busso (U Perugia, IT)
- \rightarrow H. Fynbo (Aarhus, Denmark)
- \rightarrow F. Kaeppeler (Karlsruhe, DE)
- \rightarrow R. Diehl (MPI Garching, DE)
- \rightarrow M. El Eid (AUB Beirut, Lebanon)
- \rightarrow B. Rubio (IFIC, Valencia, ES)
- \rightarrow E. Moya (UCMadrid, ES)
- \rightarrow S. Shore (U Pisa, IT)
- \rightarrow A. Chen (U McMaster, Canada)

 \rightarrow J. Aysto (U Jyväskylä, Finland)

Letter of intent

	$^{13}C(\alpha,n)^{16}O$	22 Ne(α ,n) 25 Mg	²² Ne(α ,n) ²⁵ Mg	
Location	AGB - Pocket	AGB - He flash (short, intense burst)	M > 13 M _☉ Red Giant He- & C-burning	
Importance	Primary source (weaker but longer)	Secondary source (slight change of abundances)	Weak component	
Requirements	Needs ¹³ C	²² Ne is abundant	¹⁴ N converted to ²² Ne	
Temperature	$0.9 - 1.0 \ge 10^8 \text{ K}$	2.7 x 10 ⁸ K	2.2 - 3.5 x 10 ⁸ K	
Neutron density	$7 \text{ x } 10^7 \text{ cm}^{-3}$	10 ¹⁰ cm ⁻³ (peak)	$2 \times 10^7 \text{ cm}^{-3} \text{ max}$	
Duration	20,000 yr	few years	Red giant phase	
Neutron ^{τ} = $\int j_n(t)dt$	0.1 / mb	0.01 / mb	0.2 / mb	

What is the source of the required stellar neutron flux? The rates of these reactions must be accurately known

- Astrophysically relevant range $E_x = 10.9 11.5 \text{ MeV}$
 - High density, resonances not resolved, widths not known
- ✓ The α-particle separation energy in ²⁶Mg is at S_{α} =10.6 MeV
 - Assume hypothetical resonance at $E^{R}_{CM} = 537 \text{ keV} (E_{a} = 635 \text{ keV})$
 - $\omega\gamma < 60$ neV [Jaeger et al.]
 - Thick, ²²Ne:Ni = 2:1 target, (active region ≈ 30 keV thick) (e.g., produced using 80 keV

²²Ne implanted in ≈ 0.5 mm Ni backing)

Assumptions:

I (⁴He) \approx 500 µA and detection efficiency of $\eta \approx$ 50% 10 counts / hour

²²Ne(α ,n)²⁵Mg

✓ Astrophysically relevant region $E_r^{CM} = 150 \text{ keV}$ to $E_r^{CM} = 230 \text{ keV}$

- Free from narrow resonances
- Assume slowly vayring S-factor down to $E^{R}_{CM} = 200 \text{ keV} (E_{a} = 260 \text{ keV})$ [Drotleff et al.]
- S-factor is approximately $S = 10^6 \text{ MeV} \cdot \text{barn}$
- σ≈10⁻¹³ b
- Thick, ${}^{13}C + Cu$ target

(evaporated/implanted, active region ≈ 30 keV thick)

Assumptions:

I (⁴He) \approx **500 µA** and detection efficiency of $\eta \approx$ **50%**

2.5 counts/hour

Minimum measured E: 270 keV [Drotleff]

✓ LSC strategic plan

- \rightarrow CUNA for the period 2015-2020 [cf. talk by A. Ianni]
- → Expending profile, resources
- ✓ Decisions on infrastructure
 - \rightarrow accelerator, hall, shielding
- ✓ Collaboration/complementarity to other facilities (LUNA-MV)
 - \rightarrow Several talks on the Physics!
- ✓ Neutron background study
 - → Jordán, Taín et al., Astropart. Phys. 42 (2013) 1
 - → Several measurements ongoing See talk by J.L. Taín
- ✓ Development of a detector for (α, n) reactions
 - → Detector prototype, low background See talks by J.L. Taín and P. Calviño
- ✓ Test beam for radiative capture gamma detection
 - \rightarrow Total absorption measurements, simulations See talks by A. Algora

Infrastructure

Cave design study

Modifications to dimensions: height at the arch has been increased to 9.2 m

Pre-project for the cave

Another option?

Accelerator

3.5 MV HVee Singletron (2.0 MV HVee)

- # Terminal V: 0.2-3.5 MV
- # Terminal V ripple: 200 Vpp
- # V stability (at 2250 kV): ±150 V

X-ray radiation level (at 1 m from the tank): less than 2 $\mu Sv/h$

- # H+ beam current (after the magnet): 100 μA
- # **RF** ion source (H+, He+)

Other options considered for future upgrades D.J.W. Mous et al., NIM B130 (1997) 31-36

✓ AIFIRA (CENBG Bordeaux)

- \rightarrow measured Ripple: V_{pp} = 28 V at 2250 keV
- \rightarrow Beam current @ 3.5 MeV > 80 μ A (He⁺), good beam brightness

See talk by T. Kurtukian-Nieto Possibility of **beam induced background** measurements at their lab

Other options... recycle!

NEC 5SDH-2 Pelletron

- # "Recycled" from Aarhus laboratory
- # In working condition
- # Similar to Jyväskylä VTT (materials)
- # Tandem 1.7 MV terminal voltage
- # H and He source, maximum ⁴He⁺⁺ energy 5.1 MeV
- # Currents ~1 μA

NEC single-ended / tandem Pelletron # 10.5SDH-4 Pelletron # 3.5 MV and 600 µA nominal # Terminal V ripple via corona probe and the generating voltmeter # 7 m long tank, SF₆

In principle this solution will perfectly fit

Plans - Implementation

L.M. Fraile		Material	Cost (k€)	
✓	Budget → Hall & infrastructure via FEDER? → Expending profile, resources	Accelerator, beam lines, analyzing magnet Hall construction, infrastructure and shielding	2000 - 2700 1000 - 3500	
	\rightarrow Contribution to LSC strategic plan	Neutron detection and	500	
\checkmark	Decisions on infrastructure \rightarrow accelerator, hall, shielding	High resolution gamma detection and DAQ	200	
✓	Neutron background study	Scintillator array with DAQ Experimental mechanics	350 400	
	 → Jordán, Taín et al., Astropart. Phys. 42 (2013) 1 → Several measurements ongoing 	and shielding		
✓ Development of a detector for (α, n) reactions → Detector prototype low background				
✓	Test beam for radiative capture - gamma det → Total absorption measurements, simulations	ection		

See contributions to this workshop

Letter of Intent

Canfranc Underground Nuclear Astrophysics

EoI-12-2009-CUNA

October 2012

Letter of Intent A nuclear astrophysics facility for the LSC. The sources of neutrons in the stars and other reactions of astrophysical interest

TÚNEL INTERNACIONAL DE SOMPORT (CARRETERO)

L.M. Fraile (spokesperson), B. Olaizola, J.M. Udías Grupo de Física Nuclear, Universidad Complutense de Madrid, Madrid, Spain

J. José, R. Longland, <u>A. Parikh</u> GAA, Universitat Politecnica de Catalunya, Barcelona, Spain

<u>M. Hernanz</u>, J. Isern Institut de Ciencies de l'Espai-CSIC, Bellaterra, Spain

C. Abia, <u>I. Domínguez</u> Universidad de Granada, Granada, Spain

F. Calviño, <u>B. Gómez-Hornillos</u>, GREENER, Universitat Politecnica de Catalunya, Barcelona, Spain

D. Cano, T. Martínez Centro de Investigaciones Energéticas y Medioambientales, Madrid, Spain

J. Benlliure, M. Caamaño Universidad de Santiago de Compostela, Santiago de Compostela, Spain

A. Algora, D. Jordán, J.L. Taín Instituto de Física Corpuscular, CSIC-Universidad de Valencia, Valencia, Spain

I. Irastorza, <u>G. Luzón</u> Lab. de Física Nuclear y Astropartículas, Universidad de Zaragoza, Zaragoza, Spain