# Direct measurement of the $^{22}Ne(p,\gamma)^{23}Na$ reaction cross section at LUNA

Nuclear Astrophysics at the Canfranc Underground Laboratory 2<sup>nd</sup> CUNA Workshop

#### Federico Ferraro



Università degli studi di Genova

INFN-Sezione di Genova

aboratory Underground Nuclear Astrophysics

# Overview

Astrophysical motivation

- The NeNa cycle
- The <sup>22</sup>Ne(p, $\gamma$ )<sup>23</sup>Na reaction

The experimental apparatus

- LUNA gas target (D. Bemmerer)
- HPGe setup
- BGO setup
- Experimental methods

#### Measurements

- New resonances
- New upper limits

#### Very quickly

Some detailed information

Very preliminary results





# The NeNa cycle



- H burning cycle
- It affects the nucleosynthesis of the elements between <sup>20</sup>Ne and <sup>26</sup>Al (link with the MgAl cycle)
- Active in RGB stars, AGB stars (HBB), CN and SN Ia

J. Marion and W. Fowler, ApJ 125 221-32 (1957)

- C. Iliadis et al., ApJSS 142, 105-137 (2002)
- N. Prantzos et al., A&A 470, 179190 (2007)
- R. G. Izzard et al., A&A 466, 641 (2007)
- E. Carretta et al., A&A 505, 117 (2009)
- A. Parikh et al., A&A 557, A3 (2013)





# The <sup>22</sup>Ne(p, $\gamma$ )<sup>23</sup>Na reaction



- Several excited states
- Some of them have never been directly observed











- Newly measured resonance strengths
- Still room for some improvements





Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop





- •Muon flux suppression: 10<sup>6</sup>
- •Neutron flux suppression: 10<sup>3</sup>

**Figure 4.** The upper panel illustrates spectra of  $\gamma$ -ray background as observed with a Ge detector placed outside (grey line) and inside (black line) of LNGS. The lower panel shows a comparison of low-energy spectra inside LNGS without lead shielding (grey line) and including a heavy lead shield (black line).

E [keV]





## LUNA - features





Federico Ferraro



# The gas target







# The gas target







# The gas target







# HPGe phase



- •HPGe @ 90° (90% rel. eff.)
- •HPGe @ 55° (137% rel. eff.)
- •22-25 cm Pb shield
- •Radon box
- •4 cm Cu liner for the HPGe @ 55°
- •Pb shields inside the chamber
- •W brick inside the chamber
- •Pb wall on the back





# HPGe phase

### CERNCOURIER

#### **U**NDERGROUND LABORATORIES

VOLUME 56 NUMBER 2 MARCH 2016

# LUNA observes a rare nuclear reaction that occurs in giant red stars

In December, the Laboratory for Underground Nuclear Astrophysics (LUNA) experiment (*CERN Courier* October 2004 p31) reported the first direct observation of sodium production in giant red stars, one of the nuclear reactions that are fundamental to the formation of the elements that make up the universe.

LUNA is a compact linear accelerator for light ions (maximum energy 400 keV). A unique facility, it is installed in a deep-underground laboratory and shielded from cosmic rays. The experiment aims to study the nuclear reactions that take place inside stars, where elements that make up matter are formed and then driven out by gigantic explosions and scattered as cosmic dust.

For the first time, LUNA has observed three low-energy resonances in the neon-sodium cycle, the  ${}^{22}Ne(p,\gamma){}^{23}Na$ reaction, responsible for sodium production in red giants and energy generation. LUNA recreates the energy ranges of nuclear reactions and, with its accelerator, goes back in time to one hundred million years after the Big Bang, when the first stars formed and the processes that gave rise to the huge variety of elements in the universe started.

This result is an important piece in the puzzle of the origin of the elements in the universe, which LUNA has been studying for 25 years. Stars assemble atoms through a complex system of nuclear reactions. A very small fraction of these reactions have been studied at the energies existing inside of the stars, and a large part of those few cases have been observed using LUNA.

A high-purity germanium detector with relative efficiency up to 130% was used for this particular experiment, together with a windowless gas target filled with enriched gas. The rock surrounding the underground facility at the Gran Sasso National Laboratory and additional passive shielding protected the experiment from cosmic rays and ambient radiation, making the direct observation of such a rare process possible.



Members of the LUNA collaboration pictured next to the facility.

#### Further reading

F Cavanna *et al.* (The LUNA Collaboration) 2015 *Phys. Rev. Lett.* **115** 252501





# HPGe phase

- First direct observation of the 189.5 keV resonance:
  - $\omega \gamma_{189.5 \ keV} \ge 0.12 \times 10^{-6} \,\text{eV}$  (90% C.L.)

Eur. Phys J. A (2014) **50**: 179



• Precise measurement of  $\omega \gamma_{189.5 \ keV}$ :

 $\omega \gamma_{189.5 \ keV}$  = (1.87 ± 0.06) × 10<sup>-6</sup> eV

• 2 newly observed resonances at 259.7 keV and 156.2 keV with their strength:

 $\omega \gamma_{259.7 \ keV} = (6.89 \pm 0.16) \times 10^{-6} \text{ eV}$  $\omega \gamma_{156.2 \ keV} = (1.48 \pm 0.06) \times 10^{-7} \text{ eV}$ 

• Upper limits on the strengths of the resonances at 215 keV, 105 keV and 71 keV:

 $ωγ_{215 \ keV} ≤ 2.8 × 10^{-8} \text{ eV}$   $ωγ_{105 \ keV} ≤ 7.6 × 10^{-9} \text{ eV}$   $ωγ_{71 \ keV} ≤ 1.5 × 10^{-9} \text{ eV}$ Phys. Rev. Lett. **115**, 252501



# BGO phase

Differential pumping system

BGO detector (around the target chamber)



Gas purifier

Connections to the calorimeter control system



Federico Ferraro

Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop



## BGO setup







## Calorimeter





- NI-cRIO modules
- LV programmed Integrated controller
- •4 RTDs (3 on the h.s., 1 on the c.s.)
- Hot side temperature active control: 8 power resistors
- Cold side liquid-cooling
- Operating power:  $\sim$  120 W
- Beam power:  $\sim 80 \text{ W}$





### P and T profiles







Federico Ferraro

Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop



# Efficiency

- •Measured along the beam axis
- •10 different positions
- •<sup>137</sup>Cs, <sup>7</sup>Be, <sup>88</sup>Y, <sup>60</sup>Co, <sup>14</sup>N(p,γ)<sup>15</sup>O
- •Very light source holder
- •MC simulations





Source

holder





### MC fine tuning ongoing (to reproduce the measured efficiency and the features in the spectra)



Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop



# Laboratory background

#### Sum Energy Spectrum







# A quick crosscheck

189.5 keV resonance







# A quick crosscheck

156.2 keV resonance







# Decay from 8943.5 keV excited state (156.2 keV resonance)







# $^{22}Ne@E_p=71~keV$ (target chamber center)

Sum of different runs







# Ar @ $E_p = 71 \text{ keV}_{(target chamber center)}$

Sum of different runs









#### Sum Energy Spectrum







#### Sum Energy Spectrum







# Low energy resonances preliminary results





Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop



# Direct capture preliminary results

2.000 mbar 22Ne, Ep=205 keV







# Conclusions

#### WHAT WE DID SO FAR...

- •3 new low-energy resonances have been directly observed for the first time during the HPGe phase
- •Improved upper limits have been determined for the tentative resonances both during the HPGe phase and the BGO phase
- •DC contribution measured @ 205 keV and 310 keV

#### WHAT TO DO NOW?

- •We still have to measure the DC cross section in other 2 points and determine its contribution to the reaction rate
- •Measure the <sup>22</sup>Ne( $\alpha$ ,  $\gamma$ )<sup>24</sup>Mg cross section (using the same setup)







# The LUNA collaboration

#### **INFN LNGS/GSSI, Italy**

A. Boeltzig, G.F. Ciani, A. Formicola, I. Kochanek, M. Junker **HZDR Dresden, Germany** D. Bemmerer, M. Takacs Università di Padova and INFN Padova, Italy C. Broggini, A. Caciolli, R. Depalo, R. Menegazzo, D. Piatti **INFN Roma 1. Italy** C. Gustavino **MTA-ATOMKI Debrecen, Hungary** Z. Elekes, Zs. Fülöp, Gy. Gyurky, T. Szucs **INAF** Teramo, Italy O. Straniero Università di Genova and INFN Genova, Italy F. Cavanna, P. Corvisiero, F. Ferraro, P. Prati, S. Zavatarelli Università di Milano and INFN Milano, Italy A. Guglielmetti, D. Trezzi Università di Napoli and INFN Napoli, Italy A. Best, A. Di Leva, G. Imbriani Università di Torino and INFN Torino, Italy G. Gervino University of Edinburgh, United Kingdom M. Aliotta, C. Bruno, T. Davinson Università di Bari and INFN Bari, Italy

G. D'Erasmo, E.M. Fiore, V. Mossa, F. Pantaleo, V. Paticchio, R. Perrino, L. Schiavulli, A. Valentini





# Other stuff



Federico Ferraro



### P and T profiles





Federico Ferraro



## P and T profiles

#### PRESSURE PROFILE

#### **TEMPERATURE PROFILE**





Nuclear Astrophysics at the Canfranc Underground Laboratory 2nd CUNA Workshop



# The NeNa cycle



- <sup>22</sup>Ne provides neutrons for neutron-capture driven nucleosynthesis.
- In a hydrogen-rich scenario, <sup>22</sup>Ne is mainly destroyed by the <sup>22</sup>Ne(p,γ)<sup>23</sup>Na reaction.



