Static type, windowless gas targets underground 2nd Workshop on Nuclear Astrophysics at the Canfranc Underground Laboratory Canfranc/Spain, 01.03.2016 **Daniel Bemmerer** #### Windowless gas target systems - For low-energy, low counting rate experiments, the ion beam induced background may be a problem. - This is especially true for experiments with ¹H beam. #### Typical backgrounds: - (a) Direct capture on nuclei with similar atomic charge - $^{13}C(p,\gamma)$ background when $^{14}N(p,\gamma)$ is to be studied - (b) Resonant capture at particular beam energies - 19 F(p, $\alpha\gamma$) at 224 keV, 340 keV, and at higher energies - ¹¹B(p,γ) at 163 keV, 600 keV, and at higher energies - 15N(p,αγ) at 430 keV and 897 keV, and at higher energies Gas targets are one way to reduce this beam induced background! # Windowless gas target system at LUNA #### Pumping scheme # Beam intensity measurement: Calorimeter with constant temperature gradient #### Electrical calibration #### Target density: Pressure measurement #### Target density: Effective target density (resonance scan technique) #### Target density: Effective target density (elastic scattering) # Gas inlet regulation with manual offset and active feedback # "Oil-free" forepump # Watercooled input detector #### Rack with slow control #### Windowless gas target systems, summary and lessons learned Gas targets were instrumental in several highly successful LUNA measurement campaigns: - natN for $^{14}N(p,\gamma)^{15}O$ and $^{15}N(p,\gamma)^{16}O$ - ³He for ³He(α , γ)⁷Be and ³He(³He,2p)⁴He - 2 H for 2 H(α,γ) 6 Li (Davide Trezzi's talk yesterday) - ²²Ne for ²²Ne(p,γ)²³Na (Federico Ferraro's talk yesterday) #### Lessons - Try to keep your setup free from water (deuterium), oil (¹²C, ¹³C), teflon (¹⁹F) - New problem boron, not yet clear where it is coming from #### You need many pumps! - Sensitive: high pumping speed turbomolecular pumps - New turbopumps can handle 10⁻² mbar pressure over longer periods You need a recirculation system for expensive gases - Chemical getters work fine - Monitor either by nuclear reactions, or by mass spectrometer