# Static type, windowless gas targets underground

2<sup>nd</sup> Workshop on Nuclear Astrophysics at the Canfranc Underground Laboratory

Canfranc/Spain, 01.03.2016

**Daniel Bemmerer** 













#### Windowless gas target systems

- For low-energy, low counting rate experiments, the ion beam induced background may be a problem.
- This is especially true for experiments with <sup>1</sup>H beam.

#### Typical backgrounds:

- (a) Direct capture on nuclei with similar atomic charge
- $^{13}C(p,\gamma)$  background when  $^{14}N(p,\gamma)$  is to be studied
- (b) Resonant capture at particular beam energies
- $^{19}$ F(p, $\alpha\gamma$ ) at 224 keV, 340 keV, and at higher energies
- <sup>11</sup>B(p,γ) at 163 keV, 600 keV, and at higher energies
- 15N(p,αγ) at 430 keV and 897 keV, and at higher energies

Gas targets are one way to reduce this beam induced background!







# Windowless gas target system at LUNA



#### Pumping scheme



# Beam intensity measurement: Calorimeter with constant temperature gradient





#### Electrical calibration









#### Target density: Pressure measurement



#### Target density: Effective target density (resonance scan technique)



#### Target density: Effective target density (elastic scattering)



# Gas inlet regulation with manual offset and active feedback









# "Oil-free" forepump









# Watercooled input detector



#### Rack with slow control



#### Windowless gas target systems, summary and lessons learned

Gas targets were instrumental in several highly successful LUNA measurement campaigns:

- natN for  $^{14}N(p,\gamma)^{15}O$  and  $^{15}N(p,\gamma)^{16}O$
- <sup>3</sup>He for <sup>3</sup>He( $\alpha$ , $\gamma$ )<sup>7</sup>Be and <sup>3</sup>He(<sup>3</sup>He,2p)<sup>4</sup>He
- $^{2}$ H for  $^{2}$ H( $\alpha,\gamma$ ) $^{6}$ Li (Davide Trezzi's talk yesterday)
- <sup>22</sup>Ne for <sup>22</sup>Ne(p,γ)<sup>23</sup>Na (Federico Ferraro's talk yesterday)

#### Lessons

- Try to keep your setup free from water (deuterium), oil (<sup>12</sup>C, <sup>13</sup>C), teflon (<sup>19</sup>F)
- New problem boron, not yet clear where it is coming from

#### You need many pumps!

- Sensitive: high pumping speed turbomolecular pumps
- New turbopumps can handle 10<sup>-2</sup> mbar pressure over longer periods

You need a recirculation system for expensive gases

- Chemical getters work fine
- Monitor either by nuclear reactions, or by mass spectrometer





