Nuclear Astrophysics at the Canfranc Underground Laboratory, 2nd CUNA Workshop

Contribution ID: 1 Type: not specified

Measurement of the 23Na(a,p)26Mg cross section at astrophysically relevant energies

Observation of 26 Al in the galactic medium, via decay of its daughter nucleus 26 Mg, has provided direct evidence for ongoing nucleosynthesis in the galaxy [1]. While the main sites for 26 Al production are still uncertain, the C/Ne convective shell within massive stars is a prime candidate. Large-scale network calculations have been reported which assess the impact of various reactions on 26 Al production. A strong sensitivity to the 23 Na(α ,p) 26 Mg reaction rate is found, with the 26 Al production changing by a factor of 3 for a factor 10 change in cross section [2]. We present here the results of a direct measurement of the 23 Na(α ,p) 26 Mg cross section performed at Aarhus University [3], in addition to other recent measurements performed at Argonne National Laboratory [4] and TRIUMPH [5].

[1] W. Mahoney et. al., Astrophys. J. 262, 742 (1982)

[2] C. Iliadis et. al., The Astrophysical Journal Supplement Series 193, 16 (2011)

[3] A.M. Howard et. al., Phys. Rev. Lett. 115, 052701 (2015)

[4] S. Almaraz-Calderon et. al., Phys. Rev. Lett. 112, 152701 (2014)

[5] J.R. Tomlinson et. al., Phys. Rev. Lett. 115, 052702 (2015)

Author: HOWARD, Alan Michael (Aarhus University (DK))

Presenter: HOWARD, Alan Michael (Aarhus University (DK))