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Introduction

Higher order gravities:

@ The EH action should be modified by quantum corrections. String Theory
predicts an infinite series of higher order curvature terms.

@ Cosmology. Inflation and accelerated expansion.

@ Holography. The addition of higher curvature terms in the action allows us to
extract information about general CFTs (e.g., a free scalar).

@ Well-known higher order theories:

© f(R). Useful in cosmology models. Equivalent to a scalar-tensor theory.

@ Lovelock gravity. Most general theory with second order equations.

o f(Lovelock) gravity is a natural generalization of f(R) and Lovelock theories
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Variational problem in f(Lovelock)

© Variational problem in f(Lovelock)
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Variational problem in f(Lovelock)

The f(Lovelock) action is given by

1 D, /—%
167TG /[V[d X _gf(£1a£27"'7£LD/2J)? (1)
where L, are the Euler densities (ED)

1
En = _§H1-H2p PUIV2  pV2n—1V2n (2)

- on Vi...V2p " TH1M2° H2n—1M2n "

L,=0if D < 2nand \/—gL, is topological if D = 2n. The previous action (1)
reduces to Lovelock-Lanczos and f(R) theories when we choose f to be a linear
combination of the ED or an arbitrary function of R = L;:

1D/2]
fir= > ML>2L, fr=f(R), (3)

n=0

where L is a length scale and ), are dimensionless couplings.
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Variational problem in f(Lovelock)

The variation of the action is

[D/2]
1
D D-1
5S 167TG/ d”xv/—g&.., 08" +16 z d x+/|h ;:1 Onfdving, (4)

where n,, is the normal vector to the boundary and h,,, is the induced metric on
OM. Also, we have

LD/2] | .
Eu = Z e+ 2gW£ — 2P VOV 0nf = Sguf,  (5)

n
ovh

2gﬂ“P;5“”va6gw. (6)

The field equations are
Euw =0. @)
@ Fourth order equations
@ Variational problem not well-defined: we need to set aaégw|aM =0
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Variational problem in f(Lovelock)

Boundary contribution

1 D, —a 1 D—-1
= 1orC /M d”x\/—g& 167G /oy d” " "xy/|h|B. (8)
] I £ | Boundary term B | B. conditions |
GR R —2K 3h,, =0
f(R) f(R) “2f(R)K 3h, =0, 0R =0
Lovelock L, Qn 0h,, =0
f(Lovelock) || f(L1,.-,Lp/2)) 77 77
1
@ = —2”/0 dtsy, K (%Rﬁiﬁ - K2 Kﬁi‘)---(%ﬁiﬂiflnﬁﬁ - tzKﬁiZiﬁKﬁiﬂii)

K., extrinsic curvature of OM. In f(LoveIock) we propose the following boundary
term

LD/2]
Bf(Lovelock) = Z 8nf‘(»C')Qn (9)
n=1

Pablo Antonio Cano Molina-Nifirola f(Lovelock) theories of gravity Madrid, October 30, 2015 8 /32



Variational problem in f(Lovelock)

The full f(Lovelock) action is then

[D/2]
D 1 D-1
Sr= 16WG/d xvV—gf(L1, s L1p)2y) 167/3 d®'x\/|h| Z Onf(L)Qn,
(10)
and the variation when d6h,,,, =0 is

[D/2]
(167rG)55f] :/ d®x *gc‘fwég“"f/ d° /1B > OmOnfOLmQu. (11)

8hyy=0 M oM n,m=1

In order to extremize the action we must fix also the partial derivatives of f on
the boundary:

5(0nF(L)) ]W -0, n=1,..,|D/2]. (12)

The number of independent conditions is equal to r = rank(9,0mf). Since we
have to fix the induced metric h,, and the derivatives d,f, we conclude that the
number of physical degrees of freedom in f(Lovelock) theory is

D(D — 3)

Maof = ——5— +1. (13)

are r extra degrees of freedom.
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© Equivalence with scalar-tensor theory
@ Non-degenerate case
@ Degenerate case
@ Conformal transformation
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Equivalence with scalar-tensor theory

Non-degenerate case

Let us consider again the f(Lovelock) action

— 1 D —
S— 1677GA4d X4/ gf(ﬁl,ﬁg,...,ﬁk), (14)

where k = | D/2].We want to construct an equivalent scalar-tensor theory.
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Equivalence with scalar-tensor theory

Non-degenerate case

Let us consider again the f(Lovelock) action

— 1 D —
= 167‘(GA4d X4/ gf(ﬁl,ﬁg,...,ﬁk), (14)

where k = | D/2].We want to construct an equivalent scalar-tensor theory.
If det(9,0mf) # 0, f(Lovelock) is equivalent to

k
I — 1 D, /— Y
= 167G /Md Xﬁ{;wnﬁn V(@L...,sok)}. (15)

e V is the Legendre transform of f (which exists because det(9,0mf) # 0)
@ The equivalence can be checked by using the field equation for ¢,

L, = 0,V(p). It is the inverse Legendre transform.
@ This generalizes the case of f(R), which is equivalent to

St = 1or || OxVTE{eR - V(o). (16)
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Equivalence with scalar-tensor theory

Degenerate case

In the case in which det(9,0,f) = 0 we cannot construct the Legendre transform
of f, but it can be shown that f(Lovelock) is equivalent to

S = /deF{Zap,L +Y gle)L V(som--,soi,)}- (17)

i€l jed

@ [ is a subset of r indices and J the complementary set. Therefore there are r
scalars, where r = rank(9,0mf)

o gi(ipi) are certain functions and V(g ..., ;) is the semi-Legendre transform
of f

@ In conclusion, f(Lovelock) gravity is equivalent to a scalar-tensor theory
with a number of scalars equal to the rank of the Hessian matrix of f.

@ Note that the number of scalars coincide with the number of extra degrees of
freedom in f(Lovelock)
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Equivalence with scalar-tensor theory

Degenerate case

As an example, let us consider the theory

- 1
167G

/ d%ﬁ—g{ “2Mo + R+ al®R® + BL*RL, + 7L6£§}, (18)
M
If 4ay # 3% then r = rank(0,0,f) = 2, and the equivalent scalar-tensor theory is

) 4 YL (o1 — 1)* = BL(p1 — )2 + opd
5= 167rG / d'x/=8{ 2Nt iRt 2la2 L5(4ary — 52) b
(19)

On the contrary, if 4y = 32, then r = 1 and there is an equivalent scalar-tensor
theory with only one scalar:

—1)2
S = mG/ d4x,ﬁ{_2/\o+ng+@ﬁL2cz_%}. (20)
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Equivalence with scalar-tensor theory

Conformal transformation

It is well-known that f(R) theories are equivalent, through a conformal
transformation g, = g, to GR plus a minimally coupled scalar:

St = g || doxvE{R-5(%0)" - U@}, (21)

Conformal transformation in f(Lovelock)?
o Consider, for example, f(R, L;) in D = 4.
e If f is non-degenerate, we have seen that the theory is equivalent to a
scalar-tensor theory with two non-dynamical scalars
o If we perform a conformal transformation, the resulting theory is

§&L=1WG / d*x /=& R+ oLz + 896V 66,0, — 6(V0)”

— 8V V000 — 400 (Vo) + 8V oV .0 (Ve) — U(e, <p)}
(22)

@ Second order equations
o Hordenski-like theory, with two scalars and a coupling to £,
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Linearized equations

@ Linearized equations
@ Massive gravitons in general L(R,,,q3) theories
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Linearized equations

Let us parametrize the f(Lovelock) theory in the following way

B 1
T 167G

St

/ de\/?g{ —2/\0+R+)\f(£1,...,£k)}, (23)
M

so we make explicit the Einstein-Hilbert term and the cosmological constant.
Then, we assume that our background is maximally symmetric, with metric g, .
The Riemann tensor of such space is given by

R = NS, (24)

where A is a constant. If we plug this Riemann tensor in the field equations, we
find the constraint equation for A:

20o = (D — 1)(D — 2)/\(1 - %A@lf (£) )
K . (D-3) . (25)
—(D-1)(D- 2))\;&71‘ (£) 2075 oy T (Z).

where the bar means that we evaluate at the background. This equation gives us
the possible vacua of the theory.
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Linearized equations

We perturbe the metric on this background: g,,, = g, + hy.. The linearized
equations for the metric perturbation read

= = = 1
Q(V(uwva”f’u) vVyh = 50hu + Ny — /\héw)+
+[ B VARV af _
Buw (N6 — ) (80 = V,,V,) | (VaVsh? —Oh = A(D —1)h) = 0.
D-1
(26)
where « and 3 are the following constants
(D-3)! o
a = 1+ n0p f 7/\” (27)
Z o1y
- D —2){(D —1)!
B = A Z nmOpOmf (L) (D= 2DUDZ I jnim2, (28)

(D —2nm)Y(D —2m)!

n,m=1

As an important observation, there is no term Dzhw,, which is related to the
presence of massive gravitons.
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Linearized equations

Finally, we can choose the transverse gauge, ?Mh‘“’ = V¥h, and we can identify
the physical fields. We have a traceless, massless spin-2 field, t,,, which satisfies
the equation

_% (mtﬂy - 2/\%) —0, (29)

and a scalar mode, h = h*, which satisfies

nr

“A(D — 1)[(DAB—a(D/2—1))h+BDh] = 0. (30)

The metric perturbation h,, can be reconstructed by means of the relation

N 2 6 VaRv, g,ul/
= S — O
b = b = 5= (VuTuh - B2 o), (31)
where /A7W is the traceless part of h,,:
~ 1_
hu = hu — Bg,“,h. (32)
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Linearized equations

We have found that in f(Lovelock) gravity there are no massive gravitons. This is
a nice property, because massive gravitons usually behave as ghosts. Are there
more theories free of massive gravitons?

o GR (second order equations)

Lovelock (second order equations)
f(R)
f(Lovelock)

Quasitopological gravity (cubic curvature theory)

However, most of higher order gravities contain massive gravitons. For example,
R R* or RumﬁRW"‘fB.
Which conditions must a theory satisfy so it is free of massive gravitons?
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Linearized equations

Massive gravitons in general £(R,,,3) theories

We want to determine the presence of massive gravitons in a theory of the form

S = / dPxv/—gg, (33)
M

where £ is a scalar function of the Riemann tensor R,,, and the (inverse) metric
g, The presence of massive gravitons is related to the term D2hw in the
linearized equations.

The result of our analysis is the following: We define

opry O 0L

pafr T aRUp)\n ORraBy .

On a MSB, the most general form of this tensor is

opA opA 5 .5 s = SO = =0 = apA ibj
CHOépBZ = aBpgﬁz+b (gﬂﬁgau - gMVga,@) (g )\gm7 — & ngpk)'i‘CgabngBC,'sj UBZIanUa

(35)

where B723 = 017 6465001 + of ol ol of).
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Linearized equations

Massive gravitons in general £(R,,,3) theories

The parameters a, b and ¢ depend on the Lagrangian £. We found that the
condition for not having massive gravitons is

(3

At the end, this is a constraint equation on the parameters of the theory. For
example, there are a lot of cubic gravities, most of them not studied yet, which
satisfy this condition.

If the Lagrangians Ly,...,L, are free of massive gravitons = any theory with
Lagrangian f(Li, ..., L,) is also free of them.
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Black holes

© Black holes
@ BPS solution

@ Homogeneous function
@ One ED
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Black holes

BPS solution

We consider the theory

-1
16(;/ dPx\/—= {#+R+aL2L‘2+BL2R2+7L4R£2+6L6L‘§}. (37)
us

When the parameters are given by
A 1
* = D-a0-3 "Tao-no-2
A 5= 2\
2(D —1)(D — 2)?(D - 3)’ 4D —1)(D —2)3(D — 3)3’

where ) is arbitrary, we find the following solution

[2

2
1
ds® = (1 + 7/7( )) dt® + ————dr’ + ?dQfp . (38)
L (1 Ty h(r))

where h(r) is the function

1 2D -4 LD LP-1

Pablo Antonio Cano Molina-Nifirola f(Lovelock) theories of gravity Madrid, October 30, 2015 23 /32




Black holes

BPS solution

When the constants satisfy

_ _ 1/D
0cacs L <o o<-q[tZ2ED 16)/D}

_ 1\l/D-1
8D — 16 —4Xa DD —1) (40)

the solution exists Vr > 0, it is asymptotically AdS with radius

= Lo (1+ V11— )\8"—516), there is a curvature singularity at r = 0 and a horizon.
Therefore, the solution is an asymptotically AdS black hole. In the limit A — 0 we
get

1
ds? = —g(r)dt‘2 + @dr2 + r2dQ(D_2), (41)
where ) D> D3
r<2D —4 L®= L®=
g(f):1+p D 973 T2 (42)
This is a well-known solution of R? gravity . This

solution reduces to Reissner-Nordstrom-AdS in D = 4, and to Schwarzcshild-AdS
if C = 0.
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Black holes

Homogeneous function

In D = 4 the most general f(Lovelock) gravity is

_ 1 4 —
S— 167TG/de\ﬁgf(R,£2). (43)

When f is homogeneous of degree 1, this is f(aR,al;) = af (R, L2), and if the
derivatives of f are not singular at R = 0, then this theory allows Ricci flat

solutions
)

We get solutions as Schwarzschild's or Kerr's.
In the case in which f is homogeneous of degree 1, another family of solutions can
be found by imposing drf(R, L2) = 0. This gives us a equation of the form

|aR +BL7L, = 0. (45)
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Black holes

One ED

Let us consider the theory S = [ dPx\/—gf(L,). In some cases, a solution is
given by imposing £, = A"D!/(D — 2n)! = const. A solution to this equation is
given by

2
2 2 2 r 2 102
ds ——(1—/\!‘ F(r))dt +W2F(r)+r dQ(D,Q), (46)
where
1 C1 Co L/n
F(r)= [1+/\’7(I‘D_1+I’D)] . (47)

o In D =4, n=1, this is dS/AdS-RN black hole, solution of some R? gravities.

@ If ¢ =0, the previous is solution of pure Lovelock gravity £, + const

@ If ¢ = 0 and the constant value of £, is a solution of the equation
2nL,f'(L,) — DF(L,) = 0, then the previous is a solution of f(L£,) theory.

@ Funny situation: A = ¢ =0, D = 3n+ 1: Schwarzschild-like solution!

dr?
1—r/r

d52 = —(1 — ro/r) dt2 + + r2dQ%D72)7 (48)
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Conclusions

@ Conclusions
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Conclusions

@ We have computed the variation of f(Lovelock) action and we have proposed
a generalized boundary contribution which sets the variational problem
well-posed.

@ By counting the quantities that must be fixed on the boundary we found that,
with respect to GR, there are r = rank(9,0,f) extra degrees of freedom.

@ We have shown that f(Lovelock) gravity is equivalent to a scalar-tensor
theory with r scalars.

@ We have computed the linearized equations and we have found that in
f(Lovelock) there is a massless, traceless spin-2 graviton and a scalar mode,
but there is no massive graviton.

@ We have developed a general procedure in order to determine the presence of
massive gravitons in any £(R,,qz) theory.

@ We have found several exact solutions of certain f(Lovelock) theories, some
of them represent static and regular black holes.

Pablo Antonio Cano Molina-Nifirola f(Lovelock) theories of gravity Madrid, October 30, 2015 28 / 32



Conclusions

Thank you for your attention
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Bonus

Let us consider the f(Lovelock) action

1
S = 167TG/MdDX\/fgf(El,Lig,...,ELD/QJ). (49)

Is this theory equivalent to this other one, with k = | D/2] scalar fields?

1 k
5 mG/Mde\/—*g{nz_jlanfwl,...,m)cn—V(¢17---7¢>k)}» (50)

where V(1 ..., k) = Zﬁzl Onf (D1, ey Pk )On — F(P1y -oey Di)-

The variation of the action with respect to the scalar fields yields

k
> 0n0mf(9)(Ln— ¢n) =0, m=1,...k (51)
n=1

If the only solution to these equations is ¢, = L, we recover the f(Lovelock)
action and the theories are equivalent.
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Bonus

If det(0,0mf) # 0, then the only solution is ¢, = L,. Moreover, we can perform
the Legendre transform of f:

$Yn = 6nf(¢1a"'7¢k)a n= 1)"'7k7 (52)
k
\7(()01’ ceny (Pk) = Z‘pn(én - f(¢17 (23} st) = V(¢(90)) (53)
n=1

Then, in terms of the fields @, it is clear that the action (50) takes the form

- 16;6/ XF{Z% n = V(pr, .. 7<Pk)}- (54)

!

This theory is equivalent to f(Lovelock).
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Bonus

If det(0,0mf) = 0, the solution is not unique and there are k — r non-physical
degrees of freedom, where r = rank(9,0,,f). Therefore, we should keep only r
scalars. If we define

@n:anf(¢1,...7¢k), n:17...,k. (55)

Then, there is a subset | C {1, ..., k} of r indices such that {y;}ic; are
independent variables. The rest of fields depend on the formers: ¢; = g;(¢i),
j€Jd={1,...,k} — |. We take as independent variables (¢;, ¢;), and we can
define the semi-Legendre transform of f:

ZSD ¢l+zgj 90/ ¢17 7¢k)' (56)

i€l JjeJ

It can be shown that it only depends on ;. Then, f(Lovelock) is equivalent to a
scalar-tensor theory with r scalars:

S = /deF{Zap,L +> gL — V(e ,so;,)}- (57)

i€l jed
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