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Introduction

Asymptotic safety provides a possible continuum limit for gravity for which we
expect universal scaling behaviour. Wish to compute e.g. one-loop beta function:

B = (d—2)G — bG?

Continuum limit at a UV fixed point (Weinberg 79’):
One-loop: b >0

Close to two dimensions (Tsao ’77, Jack and Jones 91, Kawai and Ninomiya ’90 ):
d=2+c¢
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Exact RG approach

* Recent studies are based on the effective average action (Wetterich
94, Morris 94):.
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* Scale dependent action:
'y =1
R — IR regulator

» For gravity pioneering work by Reuter ( followed by many more studies
Percacci, Litim, Saueressig, Benedetti, Morris etc.)



Phase diagram

Typical RG phase diagram for dimensionless Newton’s constant and cosmological
constant :
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Asymptotic Safety

Non-perturbative renormalisation.
UV fixed point with a finite number of relevant directions.
F(R) truncations up to R"70 (KF, Litim, Schroder):
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Three relevant directions.

Spectrum of critical exponents is near to the gaussian one expected
from perturbation theory —> Canonical mass dimension still a good
guiding principle.



Issues of ERG approach

Issues of exact renormalisation group approach:
- gauge dependence (Falkenberg, Odintsov '98)

525(04,,0)
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Hypothesis: These may stem from approximations where diffeomorphism invariance
is lost. This is related to the off-shell effective action being gauge dependent.

- poles in the propagators:

Aim: Restore gauge invariance to improve the reliability of perturbative/non-
perturbative calculations.

Achieved by specific choice of field parameterisation.



Semi-classical theory

Aim to find a gauge independent one-loop beta function generated by graviton fluctuations:
2
Be = (d—2)G —bG
One-loop effective action:
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Standard approach:

Yuv — g,uu + h,ul/

Problem: linearised theory,

1
SEH,1 = /ddx §h : Sgﬁ - h

is not gauge invariant if background metric is off-shell (Deser, Henneaux gr-qc/0611157):
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Semi-classical theory

Lack of gauge invariance —> gauge dependent effective action

Gauge independence is restored only by going on-shell (see e.g. Benedetti New J. Phys.
14 (2012) 015005)
2d -
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The linearised theory is not unique and depends on the parameterisation of the metric
fluctuations. e.g. the exponential parameterisation (employed recently by e.g. Nink Phys.
Rev. D 91, 044030 (2015)):
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Aim to find a parameterisation which restores gauge invariance at the
linear level for:
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Restoring diffeomorphism invariance

« Essential observation: going to an arbitrary Einstein space solves all but the
trace of the Einstein equations. Hence terms in the action

. 2d - R
(2) — g(2) — ' —
S\¢)=§ +X(R d_2>\b) : with Ruvzgwd

which both breaks diffeomorphism invariance and leads to poles in the
propagators are proportional to the trace of the Einstein equations.

« Where X is parameterisation dependent and S(?) is independent of
the cosmological constant.

e |dea: Find a parameterisation such that

”w ="

and thus restore diffeomorphism invariance of the off-shell hessians.



Restoring diffeomorphism invariance

« To remove these terms we only need to choose a parameterisation for which the
cosmological constant is absent from the linearised action e.g. taking the volume element
itself as a field:

o(x)

@) = wle) = V@ 1+ 757 = (14 2) ga(eh))

where £, is a traceless field.
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e Linearised theory is now gauge invariance under:
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Gauge independent effective action

* One loop effective action:

1
F[g,uz/] _ S[g,uu] — §Tr[10g AZ] o TI'[IOgAl]

e ™~

Metric fluctuations Ghosts

« with differential operators:



One-loop beta function

Two issues pointed out in the introduction have been resolved by restoring
diffeomorphism invariance at the semi-classical level.

After a suitable normalisation of the cutoff scale one can find a universal
one loop beta function

Be = (d—2)G — §(18 _N,) G

d(d — 3)
Ng — = Number of polarisations of the graviton

2

This beta function can be obtained using covariant proper time
renormalisation or the functional renormalisation group.

Can also be found by gauge fixing the conformal fluctuations (Percacci,
Vacca 2015).
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Paramagnetic dominance

« As observed in the gauge dependent set-up by Reuter and Nink (jhep 1301,
062 (2013), 1208.0031) asymptotic safety results from the dominance of

the terms resulting from the non-minimal coupling

fe = (d—2)G — 5(18 - Ny)

2

Classical scaling dimension

“diamagnetic” counts
physical degrees of
freedom

G2
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Paramagnetic dominance

« As observed in the gauge dependent set-up by Reuter and Nink (jhep 1301, 062
(2013), 1208.0031) asymptotic safety results from the dominance of the terms
resulting from the non-minimal coupling

Be = (d—2)G — (18 — N,) G

'

Classical scaling dimension Non-minimal coupling aka

“paramagnetic”
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Role of convexity?

Removed gauge dependence by a specific
parameterisation.

Have we gained anything or just shifted
the problem?

Physical results should not depend on the
gauge or the parameterisation.

However not all choices lead to a convex
effective action:

G- (Fg) +Ri) >0



Role of convexity?

* Choice of parameterisation/gauge implicitly
effects the RG scheme.

 Not all RG schemes lead to well defined RG flows

* |dea: Preferred gauges, parameterisations and cut-
off schemes remove poles in the propagator:

G (I'?® +Rp) >0

/

Field space metric (de Witt metric) D’y — d’y \/det g

* At one loop this is equivalent to demanding that
the gaussian integrands are of the right sign.



Role of convexity?

 De witt metric:

1748% 1 o UV 1748 UV X
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‘corrects’ the sign of conformal modes (Mazur, Mottola ’90).

 Solution to the conformal factor instability.
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Beyond one-loop

Non-perturbative Einstein Hilbert truncation

R
Ip= [ d
g /d T <)\k 167TGk>

Hessian’s (for X=0) given by:

Y = (167Gr) A,

IR cutoff function suppresses low energy modes:

Rk,s(As) — (167TGk)_1]€20(A8/]€2)

Convex for all local fluctuations

G 1. (F,(f) Ri) > 0
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Beyond one-loop

« Use the functional renormalisation group to compute non-perturbative beta
function.

« Single metric truncation is gauge independent.

2 (N, —18)GZy/5_1

BG — G(d — 2+ nG) nGg = d—2 = 3
3(4m) 2 (2 1)+ (Ny,—18) GZy/9 4

« Fixed point for positive Newton’s constant in d<8 dimensions
« Critical exponent:
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* Involves the integrals
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Critical scaling

Regulator independence close to two dimensions:
1 2
1/V:€—|—§€ + ... d:2—|—€

Both gauge and regulator independent to second order

Comparison with two loop calculation (Aida and Kitazawa (1997), hep-th/
9609077)

3
l/v=c¢€¢+ 5624—...
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Critical scaling

d=4 dimensions known result from lattice calculation by Hamber
( PhysRevD.61.124008 (2000), arXiv:1506.07795):

<R>E</ddgpﬁR>/V (R) ~ |G, — Gp|*1

v~ 0.335(4)

Relation to beta function comes from the scaling of the free energy

8

Scaling of the free energy can be obtained by integrating the RG
flow:

F=T4_0/V ~|Gy— G,|*



Critical scaling

* To obtain a best estimate | apply Litim’s optimisation criteria:

maximise the gap in the inverse propagator under the regulator scheme

2 2 __ 2 2

Pgap [C] =P (Zmin) = Zmin T C(zmin) Pgap [Copt] — MAaXRS (Pgap [C])
» Optimisation aims for better convergence of approximate solutions.
 Class of optimised regulators:
1 S
: bont(S) =

(1+s)2" —1 bbone pt (5) (1+s)log(l+s)—s

Copt (2) = sz?

3.04

3.03!

3.02; Optimised ERG: | UV = 1/3

1/ Vopt
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Summary

Restoring diffeomorphism invariance for simple
approximations:

* Gauge independence.
* Convexity of effective action.

* Real critical exponent in quantitative agreement
with lattice studies.

Deeper insight: Ensuring convexity of the (regulated)
effective action may be necessary to obtain physical results.
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