
CONFORMAL FRAMES
IN GRAVITY

Misao Sasaki
YITP, Kyoto University

G. Domenech & MS:  JCAP 1504, 022 (2015) [arXiv:1501.07699 [gr-qc]].

J. Gong, J. Hwang, W. Park, MS & Y. Song: JCAP 1109, 023 (2011) [arXiv:1107.1840 [gr-qc]].

N. Deruelle & MS: Springer Proc. Phys. 137, 247 (2011) [arXiv:1007.3563 [gr-qc]].

based on

Windows on Quatum Gravity
IFT, UAM-CSIC, Madrid

30 October, 2015



Chap I

Frame-Independence of 
Observables
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1. Introducton
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In cosmology, we encounter various frames of the metric
which are conformally equivalent.

But it is often said that there exists a unique physical frame
on which we should consider actual ‘physics.’

They are mathematically equivalent, so one can work in any
frame as long as mathematical manipulations are concerned.

Einstein frame, Jordan frame, string frame, ...

Is it really so?
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no unique physical frame!

D-dimensions → 4-dimensions
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or else?

No natural conformal frame, a priori

( D-tensor → 4-tensor + 4-vector + 4-scalar )

Dilatonic scalars will almost always appear.

e.g. Dimensional reduction



Two typical frames in scalar-tensor theory
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• Einstein frame

“gravitational” part : R+L(f)    ~ minimal coupling        
between g and f

matter part: G(f)L(y, A,…) y : fermion, A : vector, ...

• Jordan(-Brans-Dicke) frame

“gravitational” part : F(f)R+L(f)

matter part: L(y, A,…)      ~ minimal coupling with g

matter assumed to be universally coupled with g

∙∙∙ for baryons, experimentally consistent

f   + g

if non-universal coupling:
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2. Conformal transformations
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Standard (baryonic) matter action in 4 dims
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y : electron
A : electromagnetic 4-potential

For the moment, ignore/freeze dilatonic degrees of freedom.

‘Jordan’ frame (= matter minimally coupled to gravity)



Effect of conformal transformation
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4
S d x g i D ieA g g F Fm  
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     +  
 



2For g g  

1 3/ 2, ,where        y y    

(A is invariant in 4 dim)

1 .m m 

Conformal transformation from `Jordan frame’ to any
other frame results in spacetime-dependent mass.

And this is the only effect, provided
dynamics of dilatons (at short distances) can be neglected.

(dilatons may be dynamical on cosmological scales)



3. Standard Cosmology
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Conventional wisdom
2 2 2 2
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∙∙∙ expanding universe

cosmological redshift
1

emit
obs

E
E
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+

This is how we interpret observational data.

This is regarded as a `proof’ of cosmic expansion.

But ....

 1,0K  
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Conformal transformation:
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In this conformal frame, the universe is static.

photons do not redshift...

no Hubble flow.

Is this frame unphysical?
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• electron mass varies in time:
1( )
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• Bohr radius ∝m-1 ⇔ atomic energy levels ∝m :
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where “z” is defined by

Thus frequency of photons emitted at time z = z() from a 
level transition n → n’ is

1
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+

energy level in 
‘Jordan’ frame

this is exactly what we observe as Hubble’s law!

energy level in 
‘static’ frame

In this static frame,

Ex 1: Cosmological Redshift



Ex 2: CMB
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• CMB photons have never redshifted. 

• The universe was in thermal equilibrium when the
electron mass was small by a factor >103, ie, at time
z >103, at fixed temperature T=2.725K.

• Thomson cross section:

electron density:

2 2(1 )T T Tm z     +
3. (1 )conste en n z   +

rate of scattering/interaction per unit proper time:

1

e T
e T e T

n
n d d n dt

z


    

+

observational results are indistinguishable

Just to check physics…



Chap II

FRAME-DEPENDENCE OF INFLATION

(made by Guillem Domenech: modi�ed by MS)



Scalar-Tensor Theory

What is the Scalar-tensor theory of gravity? It considers a
scalar �eld non-minimally coupled to gravity:

S ∼
∫

d4x
√
−g̃
{
F (φ)R̃ + L̃(φ)

}
This form of the action is called Jordan frame.

By means of a conformal transformation, i.e.

g̃µν = F−1gµν ...
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Frame independence

...one can bring the Jordan frame into the Einstein-Hilbert
action, that is

S ∼
∫

d4x
√
−g {R + L(φ)} ,

the so-called Einstein frame.

What is the advantatge of such a transformation?

• Very well know how to deal with EH action (and much
easier!).

• Physical observables are in fact frame independent.
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Frame independence

However, what about the matter sector?

• Matter minimally couples to g̃ .

• As long as we have successful in�ation in the Einstein
frame we can choose the matter metric g̃ by a conformal
transformation.

• How di�erent can g̃ and g be?

• Can this matter point of view leave observational
imprints?
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In�ation: de�nition

How do we de�ne �In�ation" in a frame-independent way?

• Expansion law depends on the choice of conformal frame:

ds2 = a2(η)d s̃2, d s̃2 = −dη2 + d~x2

⇒ no expansion in the tilde frame

• Here we assumes the existence of the Einstein frame, or
at least a frame in which the linear perturbation behaves
like that in the Einstein frame.

• This means an almost scale-invariant tensor spectrum.

• This de�nition �ts all in�ation models proposed so far.
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Review: PL In�ation

We consider power-law in�ation to illustrate these points.
The In�aton φ with potential V (φ) = V0e

−λφ gives rise to
(p = 2/λ2): (Lucchin and Matarrese, 1985)

a = a0 (t/t0)
p φ = 2

λ
ln(t/t0) H = p/t ε = 1/p .

The curvature and tensor power spectrum under the slow-roll
approximation are given by

PRc
(k) =

(
H2

2πφ̇

)2
= p

8π2
H2
0

M2
pl

(
k
k0

) −2
p−1

,

PT (k) = 2
π2

H2

M2
pl

= 16
p
PRc

(k) .

We need p � 1 for a successful in�ation. (r = 16/p)
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Curvaton model

For simplicity, let us take a curvaton as a representative of
matter. The curvaton is a scalar �eld χ that:

• Initially is subdominant

• Has a non-vanishing initial energy density

• Dominates after in�aton decays

• and contributes to the scalar power spectrum
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Curvaton model

Our curvaton is a matter �eld and therefore lives in the Jordan
frame, i.e.

Sm ∼
∫

d4x
√
−g̃
(
−g̃µν∂µχ∂νχ− m̃2χ2

)
.

The power-spectrum for the curvaton under the sudden decay
approximation is given by (Lyth and Wands, 2002)

Pχ(k) = r?
δχ2

χ2
?

= r?
H̃2

(2πMplχ?)2
,

where r? is the energy density fraction of the curvaton at
decay.
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Matter point of view

Matter is coupled to the Jordan g̃ so our conformal
transformation yields

ã = F−1/2a and d t̃ = F−1/2dt .

Let us take a concrete example inspired in a dilationic
coupling, that is

F (φ) = e
γλφ/Mpl = (t/t0)

2γ .
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Matter point of view

After integrating time, the Jordan scale factor is given by
another power-law

ã = ã0 (t̃/t̃0)
p̃

H̃ = p̃/t̃ ,

where p̃ − 1 = p−1
1−γ . (p̃ can be negative!)

Figure: Jordan conformal hubble parameter H̃ as a function of the conformal time η
and p̃. For p̃ < 0 we have super-in�ation.
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Jordan Power Law

The curvaton follows the Jordan power law. This time the
power spectrum takes the same form but with p̃ instead of p.
For p̃ < 0 the spectrum is blue!

ñχ − 1 =
−2
p̃ − 1

.

Such a blue tilt might induce primordial black hole formation.

Figure: Power-spectrum for the Jordan power-law case.
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Jordan Bounce
We consider a slightly more complicated transformation, e.g.

F (φ) =
(
1+ e

−γλ
2Mpl

φ
)−2

=
(
1+ (t/t0)

−γ
)−2

.

It gives a bouncing universe in the Jordan frame!

ã ≈
{

a0(−t̃/t̃0)p̃ |t̃| � t̃0 (t̃ < 0)
a0(t̃/t̃0)

p t̃ � t̃0
.

t ~ 

a ~ 

~ t 
p 

a ~ ∝ a ~ ~ (- t) p ~ 
∝ 

a0 

0 

The singularity has been sent to t̃ → −∞.

12 / 1



Jordan Bounce

We �nd a blue tilt at short scales that gives an apparent

suppresion.

Figure: Power-spectrum for the Jordan bouncing frame.
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Summary

With a simple analytic model we have shown that:

• In the scalar-tensor theory the matter point of view can
be very di�erent although we have in�ation in the
Einstein frame!

• Depending on which frame matter is minimally coupled, it
can leave important features, e.g. to the power spectrum.

• We easily obtain a blue tilt on small scales (for the
super-inf. case) and a blue tilt on large scales (for the
bouncing case).
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