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Motivations

= Black Holes(BH’s) are promisingvindows on quantum gravity

[ BHswere born as a dramatic prediction of GR.
S G_eom_ew | 0 Their properties also set the limits of the theory.
iyldGR e 1 BHs posefundamental questiorfer Physics.
0 Exploring them may bring us new insights on high-energy msys
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= |n this talk we will discuss:

T Gravitation and geometry: a matter of metrics or somethisg#®
o Black hole structure in non-Riemannian spaces.
O Physical characterization of BH singularities:

geodesic incompletenesy¥s - curvature pathologies

O Two examples of hoBH singularities can be removéad metric-affine
space-times
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Gravity as a geometric phenomenon

= TheEinstein Equivalence Principtells us that gravitation is aurved
Space-time phenomenon
O 1t tells us that matter fields couple to a metric.
0 1t tells nothing about the form of the gravity Lagrangian.
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Gravity as a geometric phenomenon

= TheEinstein Equivalence Principtells us that gravitation is aurved

space-time phenomenon
0 It tells us that matter fields couple to a metric.

0 1t tells nothing about the form of the gravity Lagrangian.

= Obviously, whether the space-time geometry is EuclideamBnnian, or
something elsds a question that must be answereceperiments
0 Experiments provide information about a certain range efges and

length scales.

[ The kind ofeffective geometriethat arise close to the scales typically
attributed toquantum gravitycould be very different from traditional

Riemannian structuresin which GR is framed.
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Gravity as a geometric phenomenon

= TheEinstein Equivalence Principtells us that gravitation is aurved
space-time phenomenon
0 It tells us that matter fields couple to a metric.
0 1t tells nothing about the form of the gravity Lagrangian.

= Obviously, whether the space-time geometry is EuclideamBnnian, or
something elsds a question that must be answereceperiments
0 Experiments provide information about a certain range efges and
length scales.
[ The kind ofeffective geometriethat arise close to the scales typically
attributed toquantum gravitycould be very different from traditional
Riemannian structuresin which GR is framed.

= This question is as fundamental as thenber of space-time dimensioosthe
existence osupersymmetryfor instance.

= The phenomenology afravitation in non-Riemannian geometrieas been
poorly investigated.
U Is there any good reason to explore non-Riemannian geaae?
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Topology change and space-time foam

= |f topology change could occur dynamically & 10735 m ,tp ~ 10744 9):
0 Thesmoothness of Minkowski space disappeatrBlanckian scales.
0 Quantum fluctuations would lead toeation/annihilation of wormholes

===

I Fluxes through wormholes appear as pairs of elementariciestt

= A microstructure with holes and other topological defeaiseas questions:
0 What kind of frameworkshould we use to describe this scenario?
1 What properties should those effective geometries have?

I What are theirelevant degrees of freed@m
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Lessons from crystalline structures

= A microstructure withtopological defects anad macroscopic continuum limit
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Lessons from crystalline structures

= A microstructure withtopological defects anad macroscopic continuum limit

I Is what the idea of pace-time foarsuggests.

0 1s what we find in ordered structures suclBaavais crystalsgraphene...

O Crystalline structures may hadé#ferent kinds of defects

) T TT TT TT
a b cd ef gh

a) Interstitial impurity atom, b) Edge dislocation, c) Self interstitial atom

d) Vacancy, e) Precipitate of impurity atoms, f) Vacancy type dislocation loop,

g) Interstitial type dislocation loop, h) Substitutional impurity atom

T Inreal crystals, thelensity of defectss generally non-zero.
[ There arenteractionsbetween different kinds of defects.
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Lessons from crystalline structures

= A microstructure withtopological defects anad macroscopic continuum limit
I Is what the idea of pace-time foarsuggests.
0 1s what we find in ordered structures suclBaavais crystalsgraphene...

S
0000000

0 Defects have dynamics
[ Upon the action of forces or heat, defects can move and citera
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0 Wave propagation in bilayer graphene.
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[ Microscope image of a graphene layer with defects.
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Effective geometry of crystals

= Microscopic structures may yielda@ntinuum effective geometry
= Thecontinuum limitof these structures is most naturally described in terms

differential geometry
[ At each point we find 2 or 3 lattice vectors defining the mianasture.

O Moving along those vectomwe jump from atom to atom.
U Distancexan be measurduay step countinglong lattice vectors.
0 d€ =gjjdXdx , with gij = &; andld, = 0 in suitable coordinates.

o[ Je

e 0 9

X
1 Self-interstitial Vacancy

eeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee

= However, the step-counting procedure breaks down pgiht defects
[ An auxiliary idealized metric structure is necess: gE\E‘ysz D% hiux

0 Dy* depends on the density of defedion-metricity. 0,g4p # 0

Madrid, 28 Oct 2015 - p. 7/2C




e Motivations

Gravitation and Geometry

e Gravity as a geometric
phenomenon

e Topology change

e Lessons from the lab

e Effective geometry of crystals

Beyond GR: metric-affine gravity

Conclusions

The End

Gonzalo J. Olmo

Effective geometry of crystals

= Microscopic structures may yielda@ntinuum effective geometry
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Effective geometry of crystals

= Microscopic structures may yielda@ntinuum effective geometry
= Thecontinuum limitof these structures is most naturally described in terms

differential geometry
[ At each point we find 2 or 3 lattice vectors defining the mianasture.

O Moving along those vectomwe jump from atom to atom.
U Distancexan be measurduay step countinglong lattice vectors.
0 d€ =gjjdXdx , with gij = &; andld, = 0 in suitable coordinates.

o[ Je

e 0 9

X
1 Self-interstitial Vacancy
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= However, the step-counting procedure breaks down pgiht defects
Phys_ o apAux
K Hav

0 An auxiliary idealized metric structure is necessz gy,
0 Dy* depends on the density of defedion-metricity. 0,g4p # 0

® Dislocationsare the microscopic realization tafrsion Toy=Tg,— g

= |ndependen gy, andl'g, are necessary to account for microscopic defects.
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Need to go beyond GR

= |tis generally claimed that:

I At curvatures of order orbove the Planck scale 1/13, thequantum
degrees of freedom of the gravitational fislsbuld no longer be neglected
0 Quantum gravitys expected to replace classical GR at these scales and

the issues of space-time singularities.

Madrid, 28 Oct 2015 - p. 9/2C




e Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

e Need to go beyond GR
e Metric-affine gravity

e Three gravity models

e BHs with charge

e \Wormhole structure

e Curvature

e Geodesics in Born-Infeld
e BH structure in f(R)

e Geodesics in f(R)

Conclusions

The End

Gonzalo J. Olmo
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= |tis generally claimed that:

I At curvatures of order orbove the Planck scale 1/13, thequantum
degrees of freedom of the gravitational fislsbuld no longer be neglected
0 Quantum gravitys expected to replace classical GR at these scales and

the issues of space-time singularities.

= Effective geometric descriptions can also be considered:
0 QFT in curved space-timemndstring theoriesuggest that GR should be
supplemented witR> andR,, R terms at higher energies.
[ Such extensions, however, are typically affectedbyst instabilitieand

higher-order equations- undesirable features.
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Need to go beyond GR

= |tis generally claimed that:
I At curvatures of order orbove the Planck scale 1/13, thequantum

[]

degrees of freedom of the gravitational fislsbuld no longer be neglected
Quantum gravitys expected to replace classical GR at these scales and
the issues of space-time singularities.

= Effective geometric descriptions can also be considered:

[]

[]

QFT in curved space-timemndstring theoriesuggest that GR should be
supplemented witR> andR,, R terms at higher energies.

Such extensions, however, are typically affectedjbyst instabilitieand
higher-order equations- undesirable features.

= Lessons from condensed matter physics:

[]

Theeffective geometry of crystals non-RiemannianRather, it requires a
metric-affine description. Properties such as elasticity @asticity are
intimately related to Einstein’s equations in 3D.

O Whatimpactcould these geometries hawe gravitatior?
[ How doblack holeslook like in metric-affine quadratic gravi®y
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Metric-affine gravity
= |n themetric-affine(or Palatini) formalism, one assumes thas andl'g  are

By
independent entities S= [ d"x\/=gL[gw, ' | + Smatted G, W)
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Metric-affine gravity
= In themetric-affine(or Palatini) formalism, one assumes that andrBy are

independent entities S= [ d"x\/=gL[gw, ' | + Smatted G, W)

= The field equations follow from variation of the action:
0 Palatini approach

a5 o |v=a (k-

09" = 3w~
oL
éer = e

W) oL

L
50w

=0

gguv) ogH +/— 5r0( BV + OSmatter

(assuming no coupling df to the matter)
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= In themetric-affine(or Palatini) formalism, one assumes that andrBy are
independent entities S= [ d"x\/=gL[gw, ' | + Smatted G, W)

= The field equations follow from variation of the action:
0 Palatini approach
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e Need to go beyond GR

5S = fd”x[\/_—g(e%hv zgw)ég +v/~0 5ra 5y | + OSmatter

e Three gravity models

e BHs with charge
e \Wormhole structure

e Curvature U-V 6'— L —
° Geod;sics in Born-Infeld 6g :> 59”\’ 2 glJ.V 8T[G T“'V
e BH structure in f(R)

PSS 5er = 5?'3 =0 (assuming no coupling df to the matter)

Conclusions

O Metric approach

The End

The relation &rg = O [O0Gpy + Oydgos — Opdda,] implies

3L oA 5L
W—Brgy— {gauéri‘v -5 5%, } )09,y and leads to

og = <5va zguv) + L) [gwé—ru- ggpgwg“’\a?—%éy = 8nG Ty

= Metric and variations generally lead tifferent field equations
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Three gravity models

In our discussion we will consider three different models Palatini

0 A simple quadratic mode f(R)

[ A not so simple quadratic mode f(R, Q)

= R—I2R?

=R+1Z (aR +bRyRY)

0 A Born-Infeld like model: %(\/—\ngrSRw\—\/—\guv’)

B

aVrGB+r

a a rA
a0~ Tl
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Three gravity models

= |In our discussion we will consider three different models Palatini

0 A simple quadratic mode f(R) = R—I2R?

0 A not so simple quadratic mode f(R,Q) = R+12 (aR2 + bRNR”V)

0 A Born-Infeld like model: %(\/—\ngrSRw\—\/—\guv’)

0 With Ry = RPpy, andR%p,, = 0ul'Y VB GVFO‘BJrrﬁ;\ VB FS‘)\FﬁB

= Inthese theories, the connection can always be formallyesah such a way
that one obtains a set of modifisdcond-order equations for the meujg.
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Three gravity models

= |In our discussion we will consider three different models Palatini

0 A simple quadratic mode f(R) =

R—I2R?

0 A not so simple quadratic mode f(R,Q) = R+12

(aRe + bRyRYW)

0 A Born-Infeld like model: %(\/—\ngrSRw\—\/—\guv’)

B

aVrGB+r

a a rA
a0~ Tl

= Inthese theories, the connection can always be formallyesah such a way
that one obtains a set of modifisdcond-order equations for the meujg.

= For electrically charged black holdbkge last two modelgield exactly the same

equations and solutions £ = —2I2
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= Inthese theories, the connection can always be formallyesah such a way
that one obtains a set of modifisdcond-order equations for the meujg.

= For electrically charged black holdbkge last two modelgield exactly the same

equations and solutions £ = —2I2

= Exact solutions can be found for typical electric fields alst #or non-linear

theories of electrodynamics
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Three gravity models

= |In our discussion we will consider three different models Palatini

0 A simple quadratic mode f(R) = R—I2R?

0 A not so simple quadratic mode f(R,Q) = R+12 (aR2 + bRNR”V)

0 A Born-Infeld like model: K—%a (v~ low +eRwl — /~Igwl)

0 With Ry = RPpy, andR%p,, = 0ul'Y VB aVrO‘B+rS)\ VB FS‘)\FﬁB

= Inthese theories, the connection can always be formallyesah such a way
that one obtains a set of modifisdcond-order equations for the meujg.

= For electrically charged black holdbkge last two modelgield exactly the same
equations and solutions € = —2|2

= Exact solutions can be found for typical electric fields alst #or non-linear
theories of electrodynamics

= \We will just focus on the solutions. Details on the equatioas be found in the
literature.See for instance: arXiv:15082430150803272 150707763
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BHs with charge in Born-Infeld gravity

= Coupling our theory to a static, spherically symmetric &ledield one finds:

ds* = —A(x)dt? + 4 101 d>2

(%)

r

2
0 oi=14T% A(x):lll—ZM(r)GTl/z] and (%() =%,

0 where M(r) = Mg+ Mpd:G(2) %_Czs _ 242“;1_1

—+ r2(x)d§22 with:

,and z= - .

3
_ 1 /9 _ 2 _ 2 _ 22
0 61—TS E y rS—ZMO y I‘C—I‘qlg y I’q—K q /4T[

= This problem admits aaxact analytical solutian

= For not too small black holes (large mass and/or chargepandé r:

: r2
7 GR solution recoverec A(X) ~ 1— S + 55

0 with 0L ~1 and r(x)% ~ x°
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= Coupling our theory to a static, spherically symmetric &ledield one finds:

ds* = —A(x)dt? + 4 101 d>2

(%)

r

2
0 op=1k A(X>:i[1_2M(r)oTl/2] and (&) =5 -

0 where M(r) = Mg+ Mpd:G(2) %_Czs _ 242“:41_1

—+ r2(x)d§22 with:

,and z= - .

3
_ 1 /'q _ 2 _ 2 _ 2.2
O 61—2rs\/E , Is=2Mg , ré=rqgle , rq_Kq/4n.

= This problem admits aaxact analytical solutian

= For not too small black holes (large mass and/or chargepandé r:

: r2
7 GR solution recoverec A(X) ~ 1— S + 55

0 with 01 ~1 and r(x)% ~ x?

= Significant deviations arise as— r¢, nearx — 0.
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Wormhole structure

X/ X448

2
= From (%() = 2 we find r2(x) = 5 , with a minimum ai = 0.
+

This is reminiscent of asormhole geometry

r(x)
3.0

2.5

2.0

.
.
.
.
.
.
.
.
. "
.
.
.
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2 _ D-2 2(D-2) 4 4¢2(P=2) _
From (%) =2 wefind rP=?(x) = At 5 i , with a
0%
minimum atx = 0. This is reminiscent of @ormhole geometry
r(X)
3.0

2.5

2.0

~
———————————

. 0.5
e T T
ds? = —A(X)dt2 + —L > dx% +r(x)2dQ? . D = 4 (solid),D = 7 (dashed).

A(x)0%

Madrid, 28 Oct 2015 - p. 13/2(




e Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

e Need to go beyond GR
e Metric-affine gravity

e Three gravity models

e BHs with charge

e \Wormhole structure

e Curvature

e Geodesics in Born-Infeld
e BH structure in f(R)
e Geodesics in f(R)

Conclusions

The End

Gonzalo J. Olmo

Curvature

= In GR, the Reissner-Nordstrom solution is characterized by

Recr=0,

4
r
Qor=RyRY = 4,

Ker= RGBWRO(BW =

2 2 4
1203 249 | 14

r6 r/ r8
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= In GR, the Reissner-Nordstrom solution is characterized by

Rer=0,  Qer=RyRY = :—é Ker= RpRaP = 1}%;‘%— 24:?(2‘ +1;4;g
o Mothations
Greviton and Geomeny = Inour case, definin rc = /rglp andrg = 2Gof, when r > r¢ :
. 2 s
Do Ro)~ -85 +0(1) . Ao~ (1— P ) , K(9) ~ Kor+ —32F 4

e Three gravity models
e BHs with charge
e \Wormhole structure
3
. r \/Taglp
= Butwhenz=r/rc—1: |8 =>4/ ,8%=Y2 and & ~ 0572
G I r
e Geodesics in Born-Infeld P S
e BH structure in f(R)
e Geodesics in f(R)

RO~ 4+ 1) 0D+~ (1-§) [ —0 ()]

Conclusions

2
_ 60501 _ % I
Tt +<1 51)

The End

8657 525 5
reQ(g) ~ (10+ 96%1 . 3621) Tt (l_ &

)
| _ _ _

220-3%) +<1_g_c)2 S
1

9% 3% | 305(2-1)3/2

2
rek(g) ~ (16+ 0% _ 6451) + ..+ (1— g_i
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= In GR, the Reissner-Nordstrom solution is characterized by

ré 122 24rgrd 148
Rer=0, Qer=RwRY = 3, Ker=RepnRaP = =55 — —71 + =

= Inour case, definin rc = /rglp andrg = 2Gof, when r > r¢ :

2 1441213
(1—1:3'—2P+...) , K(g) ~ Kgr+ rf,r‘”’

RIS

8 9
R ~ -5 +0(%) . Ao/~

3
= Butwhen z=r/rc—1: {e‘nzi 2, &= VIdP - and 50w0.572}

s

RE)~ (~4+ ) 0D+~ 2 (1-§) [ —0 (7))

8652 525 5 65,55 5\ 2 1
r4Q(g) ~ (10+ % - 3521> o+ (1— 5—;) ot (1— 5—;) T

_ . o _
2(261—30d7) &

8857 645 3¢
raK (g) ~ (16+ 95%1 — 3521> +.. - (1— 5

If 1 = O¢ then allcurvature scalars are finite everywhéte
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Geodesics In Born-Infeld

= The equation that governs the evolution of geodesics irsfhase-time is:

2 . 2
é(S_})\() —E%2— Ve , With Vefs= (K—I— ';—Z)A(r)
0 Wherek = 0 for null geodesics ankl = 1 for time-like geodesics.

0 L2 andE? are the angular momentum and energy per unit mass.
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e Need to go beyond GR

= For null radial geodesic Vet =0

A
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4L ,
e Curvature WH case: A=A(x) [ e
e Geodesics in Born-Infeld S I
e BH structure in f(R) Sl 2+
e Geodesics in f(R) \\\ L

L —T. G‘R case: ‘A=‘x .

Conclusions - H 2 4
The End

= Null and time-like geodesics with # 0: Veff ~ — (K + ';—52) Ngé,fgc‘%)xﬁ

1 3
2

0 WH case A(x) ~+%|%|2 -Vs-GR case )\(r)zi%rc—s)

0 Main differencex €] — oo, +oo[ while r € [0,0[. Complete- Vs- Incomplete
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BH structure in  f(R) = R—AR?

= Consider a fluid like T,Y = diag—p, —p,ap,ap] , where p(x) = 05 -

= The line element in this space-time is of the form:

ds? = & (—AXTE2 + zL:dR) +12(x)dQ? , with AKx) =1— 259 and

3 14 2o
MO = Mof14+8:6(2), 51 = gl 2= £ and G = LB 1 1]
R

= These solutions have wormhole structure (leere 1/10,1/2,4/5):
z(x)
5,
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1
2
fR

= For time-like geodesic:
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= For time-like geodesic:
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0 Physical massivebservers never reach the singularity

= For null, radial geodesic:
R

+EAN(2) = — Z

V1-z2
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= For time-like geodesic:
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O before reaching the wormholeat= 0.

0 Physical massivebservers never reach the singularity

= For null, radial geodesic:

+EA(Z) = — Z 5 222k

A2)

4

A/ 1_2—2(G+

- 2(a+1)’

(9% =E2 , we get

1 2(0(1+1) : Z—2(a+1)>

" Asz— . +EA(Z)mzxX.
= Asz— 1.
+EA(2) =

|

X

_ 1 ~
V2a+2vz—1 K]

= Geodesically completgpace.
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= Further evidence supporting the regularity of these genese(BI case):
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In 4D classical geometric scenarios
What are the implications fajuantum gravit{

Gonzalo J. Olmo Madrid, 28 Oct 2015 - p. 19/2(




e Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

Conclusions

Gonzalo J. Olmo

Madrid, 28 Oct 2015 - p. 20/2i




	Motivations
	Motivations

	Gravitation and Geometry
	Gravity as a geometric phenomenon
	Gravity as a geometric phenomenon
	Gravity as a geometric phenomenon
	Gravity as a geometric phenomenon

	Topology change and space-time foam
	Topology change and space-time foam

	Lessons from crystalline structures
	Lessons from crystalline structures
	Lessons from crystalline structures

	Effective geometry of crystals
	Effective geometry of crystals
	Effective geometry of crystals
	Effective geometry of crystals
	Effective geometry of crystals
	Effective geometry of crystals


	Beyond GR: metric-affine gravity
	Need to go beyond GR
	Need to go beyond GR
	Need to go beyond GR

	Metric-affine gravity
	Metric-affine gravity
	Metric-affine gravity

	Three gravity models 
	Three gravity models 
	Three gravity models 
	Three gravity models 
	Three gravity models 

	BHs with charge in Born-Infeld gravity
	BHs with charge in Born-Infeld gravity
	BHs with charge in Born-Infeld gravity

	Wormhole structure
	Wormhole structure

	Curvature
	Curvature
	Curvature
	Curvature

	Geodesics in Born-Infeld
	Geodesics in Born-Infeld
	Geodesics in Born-Infeld

	BH structure in f(R)=R-R2
	BH structure in f(R)=R-R2
	BH structure in f(R)=R-R2

	Geodesics in f(R)=R-R2
	Geodesics in f(R)=R-R2
	Geodesics in f(R)=R-R2
	Geodesics in f(R)=R-R2


	Summary and Conclusions 
	Summary and Conclusions
	Summary and Conclusions
	Summary and Conclusions
	Summary and Conclusions
	Summary and Conclusions


	Thank you !!! 

