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Motivations

■ Black Holes(BH’s) are promisingwindows on quantum gravity:

◆ BHswere born as a dramatic prediction of GR.
◆ Their properties also set the limits of the theory.
◆ BHsposefundamental questionsfor Physics.
◆ Exploring them may bring us new insights on high-energy physics.
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Motivations

■ Black Holes(BH’s) are promisingwindows on quantum gravity:

◆ BHswere born as a dramatic prediction of GR.
◆ Their properties also set the limits of the theory.
◆ BHsposefundamental questionsfor Physics.
◆ Exploring them may bring us new insights on high-energy physics.

■ In this talk we will discuss:

◆ Gravitation and geometry: a matter of metrics or something else?
◆ Black hole structure in non-Riemannian spaces.
◆ Physical characterization of BH singularities:

geodesic incompleteness- Vs - curvature pathologies

◆ Two examples of howBH singularities can be removedin metric-affine

space-times.
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Gravitation and Geometry
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Gravity as a geometric phenomenon
■ TheEinstein Equivalence Principletells us that gravitation is acurved

space-time phenomenon.
◆ It tells us that matter fields couple to a metric.
◆ It tells nothing about the form of the gravity Lagrangian.
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Gravity as a geometric phenomenon
■ TheEinstein Equivalence Principletells us that gravitation is acurved

space-time phenomenon.
◆ It tells us that matter fields couple to a metric.
◆ It tells nothing about the form of the gravity Lagrangian.

■ Obviously, whether the space-time geometry is Euclidean, Riemannian, or

something else, is a question that must be answered byexperiments.
◆ Experiments provide information about a certain range of energies and

length scales.
◆ The kind ofeffective geometriesthat arise close to the scales typically

attributed toquantum gravitycould be very different from traditional

Riemannian structures in which GR is framed.
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Gravity as a geometric phenomenon
■ TheEinstein Equivalence Principletells us that gravitation is acurved

space-time phenomenon.
◆ It tells us that matter fields couple to a metric.
◆ It tells nothing about the form of the gravity Lagrangian.

■ Obviously, whether the space-time geometry is Euclidean, Riemannian, or

something else, is a question that must be answered byexperiments.
◆ Experiments provide information about a certain range of energies and

length scales.
◆ The kind ofeffective geometriesthat arise close to the scales typically

attributed toquantum gravitycould be very different from traditional

Riemannian structures in which GR is framed.

■ This question is as fundamental as thenumber of space-time dimensionsor the

existence ofsupersymmetry, for instance.
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Gravity as a geometric phenomenon
■ TheEinstein Equivalence Principletells us that gravitation is acurved

space-time phenomenon.
◆ It tells us that matter fields couple to a metric.
◆ It tells nothing about the form of the gravity Lagrangian.

■ Obviously, whether the space-time geometry is Euclidean, Riemannian, or

something else, is a question that must be answered byexperiments.
◆ Experiments provide information about a certain range of energies and

length scales.
◆ The kind ofeffective geometriesthat arise close to the scales typically

attributed toquantum gravitycould be very different from traditional

Riemannian structures in which GR is framed.

■ This question is as fundamental as thenumber of space-time dimensionsor the

existence ofsupersymmetry, for instance.

■ The phenomenology ofgravitation in non-Riemannian geometrieshas been

poorly investigated.
◆ Is there any good reason to explore non-Riemannian geometries???
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Topology change and space-time foam
■ If topology change could occur dynamically (lP ∼ 10−35 m , tP ∼ 10−44 s):

◆ Thesmoothness of Minkowski space disappearsat Planckian scales.
◆ Quantum fluctuations would lead tocreation/annihilation of wormholes.
◆ Fluxes through wormholes appear as pairs of elementary particles.
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Topology change and space-time foam
■ If topology change could occur dynamically (lP ∼ 10−35 m , tP ∼ 10−44 s):

◆ Thesmoothness of Minkowski space disappearsat Planckian scales.
◆ Quantum fluctuations would lead tocreation/annihilation of wormholes.
◆ Fluxes through wormholes appear as pairs of elementary particles.

■ A microstructure with holes and other topological defects raises questions:
◆ What kind of frameworkshould we use to describe this scenario?
◆ What properties should those effective geometries have?
◆ What are theirrelevant degrees of freedom?
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Lessons from crystalline structures
■ A microstructure withtopological defects anda macroscopic continuum limit:

◆ Is what the idea ofspace-time foamsuggests.
◆ Is what we find in ordered structures such asBravais crystals, graphene, ...
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Lessons from crystalline structures
■ A microstructure withtopological defects anda macroscopic continuum limit:

◆ Is what the idea ofspace-time foamsuggests.
◆ Is what we find in ordered structures such asBravais crystals, graphene, ...

■ Crystalline structures may havedifferent kinds of defects:

◆ In real crystals, thedensity of defectsis generally non-zero.
◆ There areinteractionsbetween different kinds of defects.
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Lessons from crystalline structures
■ A microstructure withtopological defects anda macroscopic continuum limit:

◆ Is what the idea ofspace-time foamsuggests.
◆ Is what we find in ordered structures such asBravais crystals, graphene, ...

■ Crystalline structures may havedifferent kinds of defects:

◆ Defects have dynamics.
◆ Upon the action of forces or heat, defects can move and interact.
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:

◆ Wave propagation in bilayer graphene.
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:

◆ Microscope image of a graphene layer with defects.
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:
■ Thecontinuum limitof these structures is most naturally described in terms of

differential geometry:
◆ At each point we find2 or 3 lattice vectorsdefining the microstructure.
◆ Moving along those vectorswe jump from atom to atom.
◆ Distancescan be measuredby step countingalong lattice vectors.

◆ ds2 = gi j dxidxj , with gi j = δi j andΓa
bc = 0 in suitable coordinates.
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:
■ Thecontinuum limitof these structures is most naturally described in terms of

differential geometry:
◆ At each point we find 2 or 3 lattice vectors defining the microstructure.
◆ Moving along those vectorswe jump from atom to atom.
◆ Distancescan be measuredby step countingalong lattice vectors.

◆ ds2 = gi j dxidxj , with gi j = δi j andΓa
bc = 0 in suitable coordinates.

■ However, the step-counting procedure breaks down withpoint defects:

◆ An auxiliary idealized metric structure is necessary:gPhys
µν = Dµ

αhAux
αν

◆ Dµ
α depends on the density of defects.Non-metricity: ∇µgαβ 6= 0
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:
■ Thecontinuum limitof these structures is most naturally described in terms of

differential geometry:
◆ At each point we find 2 or 3 lattice vectors defining the microstructure.
◆ Moving along those vectorswe jump from atom to atom.
◆ Distancescan be measuredby step countingalong lattice vectors.

◆ ds2 = gi j dxidxj , with gi j = δi j andΓa
bc = 0 in suitable coordinates.

■ However, the step-counting procedure breaks down withpoint defects:

◆ An auxiliary idealized metric structure is necessary:gPhys
µν = Dµ

αhAux
αν

◆ Dµ
α depends on the density of defects.Non-metricity: ∇µgαβ 6= 0

■ Dislocationsare the microscopic realization oftorsion: Tα
βγ = Γα

βγ −Γα
γβ
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Effective geometry of crystals
■ Microscopic structures may yield acontinuum effective geometry:
■ Thecontinuum limitof these structures is most naturally described in terms of

differential geometry:
◆ At each point we find 2 or 3 lattice vectors defining the microstructure.
◆ Moving along those vectorswe jump from atom to atom.
◆ Distancescan be measuredby step countingalong lattice vectors.

◆ ds2 = gi j dxidxj , with gi j = δi j andΓa
bc = 0 in suitable coordinates.

■ However, the step-counting procedure breaks down withpoint defects:

◆ An auxiliary idealized metric structure is necessary:gPhys
µν = Dµ

αhAux
αν

◆ Dµ
α depends on the density of defects.Non-metricity: ∇µgαβ 6= 0

■ Dislocationsare the microscopic realization oftorsion: Tα
βγ = Γα

βγ −Γα
γβ

■ Independentgµν andΓα
βγ are necessary to account for microscopic defects.
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Beyond GR: metric-affine gravity
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Need to go beyond GR
■ It is generally claimed that:

◆ At curvatures of order orabove the Planck scale, ∼ 1/l2P, thequantum

degrees of freedom of the gravitational fieldshould no longer be neglected.
◆ Quantum gravityis expected to replace classical GR at these scales and cure

the issues of space-time singularities.
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Need to go beyond GR
■ It is generally claimed that:

◆ At curvatures of order orabove the Planck scale, ∼ 1/l2P, thequantum

degrees of freedom of the gravitational fieldshould no longer be neglected.
◆ Quantum gravityis expected to replace classical GR at these scales and cure

the issues of space-time singularities.

■ Effective geometric descriptions can also be considered:
◆ QFT in curved space-timesandstring theoriessuggest that GR should be

supplemented withR2 andRµνRµν terms at higher energies.
◆ Such extensions, however, are typically affected byghost instabilitiesand

higher-order equations⇒ undesirable features.
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Need to go beyond GR
■ It is generally claimed that:

◆ At curvatures of order orabove the Planck scale, ∼ 1/l2P, thequantum

degrees of freedom of the gravitational fieldshould no longer be neglected.
◆ Quantum gravityis expected to replace classical GR at these scales and cure

the issues of space-time singularities.

■ Effective geometric descriptions can also be considered:
◆ QFT in curved space-timesandstring theoriessuggest that GR should be

supplemented withR2 andRµνRµν terms at higher energies.
◆ Such extensions, however, are typically affected byghost instabilitiesand

higher-order equations⇒ undesirable features.

■ Lessons from condensed matter physics:
◆ Theeffective geometry of crystalsis non-Riemannian. Rather, it requires a

metric-affine description. Properties such as elasticity and plasticity are

intimately related to Einstein’s equations in 3D.
◆ Whatimpactcould these geometries haveon gravitation?
◆ How doblack holes look like in metric-affine quadratic gravity?
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Metric-affine gravity
■ In themetric-affine(or Palatini) formalism, one assumes thatgµν andΓα

βγ are

independent entities:S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]
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Metric-affine gravity
■ In themetric-affine(or Palatini) formalism, one assumes thatgµν andΓα

βγ are

independent entities:S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]

■ The field equations follow from variation of the action:
◆ Palatini approach:

δS=
∫

dnx

[√−g
(

δL
δgµν − L

2gµν
)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ
= 0 (assuming no coupling ofΓ to the matter)
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Metric-affine gravity
■ In themetric-affine(or Palatini) formalism, one assumes thatgµν andΓα

βγ are

independent entities:S=
∫

dnx
√−gL[gµν,Γα

βγ]+Smatter[gµν,ψm]

■ The field equations follow from variation of the action:
◆ Palatini approach:

δS=
∫

dnx

[√−g
(

δL
δgµν − L

2gµν
)

δgµν +
√−g δL

δΓα
βγ

δΓα
βγ

]

+δSmatter

δgµν ⇒ δL
δgµν − L

2gµν = 8πGTµν

δΓα
βγ ⇒ δL

δΓα
βγ
= 0 (assuming no coupling ofΓ to the matter)

◆ Metric approach:

The relation δΓα
βγ =

gαρ

2

[

∇βδgργ +∇γδgρβ −∇ρδgβγ
]

implies

δL
δΓα

βγ
δΓα

βγ =
{

gαµ δL
δΓα

λν
− gαλ

2
δL

δΓα
µν

}

∇λδgµν and leads to

δgµν ⇒
(

δL
δgµν − L

2gµν
)

+∇λ

[

gγν
δL

δΓµ
λγ
−gβµgγνgαλ δL

δΓα
βγ

]

= 8πGTµν

■ Metric andPalatini variations generally lead todifferent field equations.
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Three gravity models
■ In our discussion we will consider three different modelsà la Palatini.

◆ A simple quadratic model:f (R) = R− l2ε R2

◆ A not so simple quadratic model:f (R,Q) = R+ l2ε
(

aR2+bRµνRµν)

◆ A Born-Infeld like model: 1
κ2ε

(√

−|gµν + εRµν|−
√

−|gµν|
)

◆ With Rµν = Rρ
µρν, andRα

βµν = ∂µΓα
νβ −∂νΓα

µβ +Γα
µλΓλ

νβ −Γα
νλΓλ

µβ
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Three gravity models
■ In our discussion we will consider three different modelsà la Palatini.

◆ A simple quadratic model:f (R) = R− l2ε R2

◆ A not so simple quadratic model:f (R,Q) = R+ l2ε
(

aR2+bRµνRµν)

◆ A Born-Infeld like model: 1
κ2ε

(√

−|gµν + εRµν|−
√

−|gµν|
)

◆ With Rµν = Rρ
µρν, andRα

βµν = ∂µΓα
νβ −∂νΓα

µβ +Γα
µλΓλ

νβ −Γα
νλΓλ

µβ
■ In these theories, the connection can always be formally solved in such a way

that one obtains a set of modifiedsecond-order equations for the metricgµν.
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Three gravity models
■ In our discussion we will consider three different modelsà la Palatini.

◆ A simple quadratic model:f (R) = R− l2ε R2

◆ A not so simple quadratic model:f (R,Q) = R+ l2ε
(

aR2+bRµνRµν)

◆ A Born-Infeld like model: 1
κ2ε

(√

−|gµν + εRµν|−
√

−|gµν|
)

◆ With Rµν = Rρ
µρν, andRα

βµν = ∂µΓα
νβ −∂νΓα

µβ +Γα
µλΓλ

νβ −Γα
νλΓλ

µβ
■ In these theories, the connection can always be formally solved in such a way

that one obtains a set of modifiedsecond-order equations for the metricgµν.

■ For electrically charged black holes,the last two modelsyield exactly the same

equations and solutions ifε =−2l2ε .
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Three gravity models
■ In our discussion we will consider three different modelsà la Palatini.

◆ A simple quadratic model:f (R) = R− l2ε R2

◆ A not so simple quadratic model:f (R,Q) = R+ l2ε
(

aR2+bRµνRµν)

◆ A Born-Infeld like model: 1
κ2ε

(√

−|gµν + εRµν|−
√

−|gµν|
)

◆ With Rµν = Rρ
µρν, andRα

βµν = ∂µΓα
νβ −∂νΓα

µβ +Γα
µλΓλ

νβ −Γα
νλΓλ

µβ
■ In these theories, the connection can always be formally solved in such a way

that one obtains a set of modifiedsecond-order equations for the metricgµν.

■ For electrically charged black holes,the last two modelsyield exactly the same

equations and solutions ifε =−2l2ε .

■ Exact solutions can be found for typical electric fields and also fornon-linear

theories of electrodynamics.
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Three gravity models
■ In our discussion we will consider three different modelsà la Palatini.

◆ A simple quadratic model:f (R) = R− l2ε R2

◆ A not so simple quadratic model:f (R,Q) = R+ l2ε
(

aR2+bRµνRµν)

◆ A Born-Infeld like model: 1
κ2ε

(√

−|gµν + εRµν|−
√

−|gµν|
)

◆ With Rµν = Rρ
µρν, andRα

βµν = ∂µΓα
νβ −∂νΓα

µβ +Γα
µλΓλ

νβ −Γα
νλΓλ

µβ
■ In these theories, the connection can always be formally solved in such a way

that one obtains a set of modifiedsecond-order equations for the metricgµν.

■ For electrically charged black holes,the last two modelsyield exactly the same

equations and solutions ifε =−2l2ε .

■ Exact solutions can be found for typical electric fields and also fornon-linear

theories of electrodynamics.

■ We will just focus on the solutions. Details on the equationscan be found in the
literature.See for instance: arXiv:1509.02430,1508.03272,1507.07763
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BHs with charge in Born-Infeld gravity
■ Coupling our theory to a static, spherically symmetric electric field one finds:

ds2 =−A(x)dt2+ 1
A(x)σ2

+
dx2+ r2(x)dΩ2

with:

◆ σ± = 1± r4
c

r4 , A(x) = 1
σ+

[

1− 2M(r)
r

1
σ1/2
−

]

and
(

dr
dx

)2
= σ−

σ2
+

,
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BHs with charge in Born-Infeld gravity
■ Coupling our theory to a static, spherically symmetric electric field one finds:

ds2 =−A(x)dt2+ 1
A(x)σ2

+
dx2+ r2(x)dΩ2

with:

◆ σ± = 1± r4
c

r4 , A(x) = 1
σ+

[

1− 2M(r)
r

1
σ1/2
−

]

and
(

dr
dx

)2
= σ−

σ2
+

,

◆ where M(r) = M0+M0δ1G(z) , dG
dz = z4+1

z4
√

z4−1
, and z= r

rc
.

◆ δ1 =
1

2rS

√

r3
q

lε
, rS= 2M0 , r2

c = rqlε , r2
q = κ2q2/4π .

■ This problem admits anexact analytical solution.

■ For not too small black holes (large mass and/or charge) and/or r ≫ rc:

◆ GR solution recovered:A(x)≈ 1− rS
r +

r2
q

2r2

◆ with σ± ≈ 1 and r(x)2 ≈ x2
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BHs with charge in Born-Infeld gravity
■ Coupling our theory to a static, spherically symmetric electric field one finds:

ds2 =−A(x)dt2+ 1
A(x)σ2

+
dx2+ r2(x)dΩ2

with:

◆ σ± = 1± r4
c

r4 , A(x) = 1
σ+

[

1− 2M(r)
r

1
σ1/2
−

]

and
(

dr
dx

)2
= σ−

σ2
+

,

◆ where M(r) = M0+M0δ1G(z) , dG
dz = z4+1

z4
√

z4−1
, and z= r

rc
.

◆ δ1 =
1

2rS

√

r3
q

lε
, rS= 2M0 , r2

c = rqlε , r2
q = κ2q2/4π .

■ This problem admits anexact analytical solution.

■ For not too small black holes (large mass and/or charge) and/or r ≫ rc:

◆ GR solution recovered:A(x)≈ 1− rS
r +

r2
q

2r2

◆ with σ± ≈ 1 and r(x)2 ≈ x2

■ Significant deviations arise asr → rc, nearx→ 0.
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Wormhole structure

■ From
(

dr
dx

)2
= σ−

σ2
+

we find r2(x) =
x2+

√
x4+4r4

c
2 , with a minimum atx= 0.

This is reminiscent of awormhole geometry.
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Wormhole structure

■ From
(

dr
dx

)2
= σ−

σ2
+

we find rD−2(x) =
|x|D−2+

√

|x|2(D−2)+4r2(D−2)
c

2 , with a

minimum atx= 0. This is reminiscent of awormhole geometry.
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■ ds2 =−A(x)dt2+ 1
A(x)σ2

+
dx2+ r(x)2dΩ2 . D = 4 (solid),D = 7 (dashed).
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Curvature
■ In GR, the Reissner-Nordström solution is characterized by:

RGR= 0 , QGR≡ RµνRµν =
r4
q

r8 , KGR≡ Rα
βµνRα

βµν =
12r2

S
r6 − 24rSr2

q

r7 +
14r4

q

r8
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Curvature
■ In GR, the Reissner-Nordström solution is characterized by:

RGR= 0 , QGR≡ RµνRµν =
r4
q

r8 , KGR≡ Rα
βµνRα

βµν =
12r2

S
r6 − 24rSr2

q

r7 +
14r4

q

r8

■ In our case, definingrc ≡
√

rqlP andr2
q = 2Gq2, when r ≫ rc :

R(g)≈− 48r8
c

r10 +O
(

r9
c

r11

)

, Q(g)≈ r4
q

r8

(

1− 16l2P
r2 + . . .

)

, K(g)≈ KGR+
144rSr2

q l2P
r9 + . . .
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r10 +O
(

r9
c
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)
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q

r8

(

1− 16l2P
r2 + . . .

)

, K(g)≈ KGR+
144rSr2

q l2P
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■ But when z≡ r/rc → 1 :
[

δ1 =
1

2rS

√

r3
q

lP
, δ2 =

√
rqlP
rS

, and δc ≈ 0.572
]

r2
cR(g)≈

(

−4+ 16δc
3δ2

)

+O(z−1)+ . . .− 1
2δ2

(

1− δc
δ1

)[

1
(z−1)3/2 −O

(

1√
z−1

)]

r4
cQ(g)≈

(

10+
86δ2

1
9δ2

2
− 52δ1

3δ2

)

+ . . .+
(

1− δc
δ1

)

[

6δ2−5δ1
3δ2

2(z−1)3/2 + . . .

]

+
(

1− δc
δ1

)2
[

1
8δ2

2(z−1)3
− . . .

]

r4
cK(g)≈

(

16+
88δ2

1
9δ2

2
− 64δ1

3δ2

)

+ . . .+
(

1− δc
δ1

)

[

2(2δ1−3δ2)

3δ2
2(z−1)3/2 + . . .

]

+
(

1− δc
δ1

)2
[

1
4δ2

2(z−1)3
+ . . .

]
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■ But when z≡ r/rc → 1 :
[
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1
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√
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, δ2 =

√
rqlP
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, and δc ≈ 0.572
]
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cR(g)≈

(

−4+ 16δc
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+O(z−1)+ . . .− 1
2δ2

(

1− δc
δ1

)[
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+
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1
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cK(g)≈

(
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)
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(
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]

+
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+ . . .
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If δ1 = δc then allcurvature scalars are finite everywhere!!!
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Geodesics in Born-Infeld
■ The equation that governs the evolution of geodesics in thisspace-time is:

1
σ2
+

(

dx
dλ

)2
= E2−Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r) .

◆ Whereκ = 0 for null geodesics andκ = 1 for time-like geodesics.
◆ L2 andE2 are the angular momentum and energy per unit mass.
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1
σ2
+

(

dx
dλ

)2
= E2−Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r) .

◆ Whereκ = 0 for null geodesics andκ = 1 for time-like geodesics.
◆ L2 andE2 are the angular momentum and energy per unit mass.

■ For null radial geodesicsVe f f = 0



● Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

● Need to go beyond GR

● Metric-affine gravity

● Three gravity models

● BHs with charge

● Wormhole structure

● Curvature

● Geodesics in Born-Infeld

● BH structure in f(R)

● Geodesics in f(R)

Conclusions

The End

Gonzalo J. Olmo Madrid, 28 Oct 2015 - p. 15/20

Geodesics in Born-Infeld
■ The equation that governs the evolution of geodesics in thisspace-time is:

1
σ2
+

(

dx
dλ

)2
= E2−Ve f f , with Ve f f ≡

(

κ+ L2

r2

)

A(r) .

◆ Whereκ = 0 for null geodesics andκ = 1 for time-like geodesics.
◆ L2 andE2 are the angular momentum and energy per unit mass.

■ For null radial geodesicsVe f f = 0

■ Null and time-like geodesics withL 6= 0: Ve f f ≈−
(

κ+ L2

r2
c

)

Nq(δc−δ1)rc

2Ncδcδ1|x| .

◆ WH case: λ(x)≈± x
3

∣

∣

x
a

∣

∣

1
2 - Vs - GR case: λ(r)≈± 2

3r
(

r
rS

)
1
2

.

◆ Main difference:x∈]−∞,+∞[ while r ∈ [0,∞[. Complete- Vs- Incomplete.
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BH structure in f (R) = R−λR2

■ Consider a fluid likeTµ
ν = diag[−ρ,−ρ,αρ,αρ] , where ρ(x) = C

r(x)2+2α .
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BH structure in f (R) = R−λR2

■ Consider a fluid likeTµ
ν = diag[−ρ,−ρ,αρ,αρ] , where ρ(x) = C

r(x)2+2α .

■ The line element in this space-time is of the form:

ds2 = 1
fR

(

−A(x)dt2+ 1
A(x)dx2

)

+ r2(x)dΩ2 , with A(x) = 1− 2M(x)
x and

◆ M(x) = M0(1+δ1G(z)), δ1 =
r3
c

8λM0
, z= r

rc
and Gz =

(

1+ α
z2+2α

)

z2α f
3/2
R

[

1
1−α − 1

2z2+2α

]
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BH structure in f (R) = R−λR2

■ Consider a fluid likeTµ
ν = diag[−ρ,−ρ,αρ,αρ] , where ρ(x) = C

r(x)2+2α .

■ The line element in this space-time is of the form:

ds2 = 1
fR

(

−A(x)dt2+ 1
A(x)dx2

)

+ r2(x)dΩ2 , with A(x) = 1− 2M(x)
x and

◆ M(x) = M0(1+δ1G(z)), δ1 =
r3
c

8λM0
, z= r

rc
and Gz =

(

1+ α
z2+2α

)

z2α f
3/2
R

[

1
1−α − 1

2z2+2α

]

■ These solutions have wormhole structure (hereα = 1/10,1/2,4/5):
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Geodesics in f (R) = R−λR2

■ The relevant equation for geodesics inf (R) theories is

1
f 2
R

(

dx
dλ
)2

= E2+gtt

(

k+ L2

r2(x)

)

,

with gtt ≈− δ1
8δ2(1−α2)

1
(z−1)2 asz→ 1.
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Geodesics in f (R) = R−λR2

■ The relevant equation for geodesics inf (R) theories is

1
f 2
R

(

dx
dλ
)2

= E2+gtt

(

k+ L2

r2(x)

)

,

with gtt ≈− δ1
8δ2(1−α2)

1
(z−1)2 asz→ 1.

■ For time-like geodesics,dx
dλ = 0 before reaching the wormhole atx= 0.

◆ Physical massiveobservers never reach the singularity.
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Geodesics in f (R) = R−λR2

■ The relevant equation for geodesics inf (R) theories is

1
f 2
R

(

dx
dλ
)2

= E2+gtt

(

k+ L2

r2(x)

)

,

with gtt ≈− δ1
8δ2(1−α2)

1
(z−1)2 asz→ 1.

■ For time-like geodesics,dx
dλ = 0 before reaching the wormhole atx= 0.

◆ Physical massiveobservers never reach the singularity.

■ For null, radial geodesics,1
f 2
R

(

dx
dλ
)2

= E2 , we get

±Eλ(z) =− z√
1−z−2(α+1)

+2z2F1

(

1
2 ,− 1

2(α+1) ;1−
1

2(α+1) ;z−2(α+1)
)
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Geodesics in f (R) = R−λR2

■ The relevant equation for geodesics inf (R) theories is

1
f 2
R

(

dx
dλ
)2

= E2+gtt

(

k+ L2

r2(x)

)

,

with gtt ≈− δ1
8δ2(1−α2)

1
(z−1)2 asz→ 1.

■ For time-like geodesics,dx
dλ = 0 before reaching the wormhole atx= 0.

◆ Physical massiveobservers never reach the singularity.

■ For null, radial geodesics,1
f 2
R

(

dx
dλ
)2

= E2 , we get

±Eλ(z) =− z√
1−z−2(α+1)

+2z2F1

(

1
2 ,− 1

2(α+1) ;1−
1

2(α+1) ;z−2(α+1)
)

■ As z→ ∞: ±Eλ(z)≈ z≈ x .

■ As z→ 1:

±Eλ(z)≈− 1√
2α+2

√
z−1

≈− 1
|x̃| .

■ Geodesically completespace.



● Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

Conclusions

● Summary and Conclusions

The End

Gonzalo J. Olmo Madrid, 28 Oct 2015 - p. 18/20

Summary and Conclusions



● Motivations

Gravitation and Geometry

Beyond GR: metric-affine gravity

Conclusions

● Summary and Conclusions

The End

Gonzalo J. Olmo Madrid, 28 Oct 2015 - p. 19/20

Summary and Conclusions
■ Black holes in GR representsingular space-times:

◆ Geodesic incompletenessof time-like and/or null geodesics.
◆ Curvature pathologiesappear as a “reason” for the incompleteness.
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Summary and Conclusions
■ Black holes in GR representsingular space-times:

◆ Geodesic incompletenessof time-like and/or null geodesics.
◆ Curvature pathologiesappear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:
◆ Centralsingularityof charged black holesreplaced by a wormhole.
◆ These wormholes have beendiscovered, not designed.
◆ The WHguarantees the extendibility of geodesicsin different ways.
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■ In metric-affine extensions of GR:
◆ Centralsingularityof charged black holesreplaced by a wormhole.
◆ These wormholes have beendiscovered, not designed.
◆ The WHguarantees the extendibility of geodesicsin different ways.

A geodesically completespace-time, despite

curvature pathologies, is anon-singular space-time.
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Summary and Conclusions
■ Black holes in GR representsingular space-times:

◆ Geodesic incompletenessof time-like and/or null geodesics.
◆ Curvature pathologiesappear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:
◆ Centralsingularityof charged black holesreplaced by a wormhole.
◆ These wormholes have beendiscovered, not designed.
◆ The WHguarantees the extendibility of geodesicsin different ways.

A geodesically completespace-time, despite

curvature pathologies, is anon-singular space-time.

■ Further evidence supporting the regularity of these geometries (BI case):
◆ A congruence of observers remains in causal contact as the WHis crossed.
◆ Scattering of waves off the WH does not signal any pathological behavior.
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Summary and Conclusions
■ Black holes in GR representsingular space-times:

◆ Geodesic incompletenessof time-like and/or null geodesics.
◆ Curvature pathologiesappear as a “reason” for the incompleteness.

■ In metric-affine extensions of GR:
◆ Centralsingularityof charged black holesreplaced by a wormhole.
◆ These wormholes have beendiscovered, not designed.
◆ The WHguarantees the extendibility of geodesicsin different ways.

A geodesically completespace-time, despite

curvature pathologies, is anon-singular space-time.

■ Further evidence supporting the regularity of these geometries (BI case):
◆ A congruence of observers remains in causal contact as the WHis crossed.
◆ Scattering of waves off the WH does not signal any pathological behavior.

Theavoidance of singularities can be achieved with simple models

in 4D classical geometric scenarios.

What are the implications forquantum gravity?
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Thank you !!!
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