

Microwave Characterization of Large Supernova Remnants with the Quijote-MFI wide survey

Cygnus Loop, HB21, CTB80, CTA1, HB9, Tycho

Carlos Hugo López Caraballo clopez@iac.es

June 2022, IAC

In radio, SNRs have relatively flat, non-thermal spectra, with spectral indices -0.3 up to -0.7. At higher frequencies, the spectral index can be steeper.

Motivation

• The 10–100 GHz range is poorly exploited for the SNR description, particularly polarization.

Planck intermediate results XXXI. Microwave survey of Galactic supernova remnants

Planck+2016, A&A, 586, A134 (16 SRNs)

Sino-German λ6cm

α=-0.36±0.03

α=-0.36±0.03

α=-0.36±0.03

1000

Frequency (MHz)

Gao+2011, A&A, 529, A159 (15 SNRs)

In radio, SNRs have relatively flat, non-thermal spectra, with spectral indices -0.3 up to -0.7. At higher frequencies, the spectral index can be steeper.

Motivation

- The 10–100 GHz range is poorly exploited for the SNR description, particularly polarization.
- A SNR is our primary calibrator.

Ritacco+2018, A&A 616, A35

In radio, SNRs have relatively flat, non-thermal spectra, with spectral indices -0.3 up to -0.7. At higher frequencies, the spectral index can be steeper.

Motivation

- The 10–100 GHz range is poorly exploited for the SNR description, particularly polarization.
- A SNR is our primary calibrator.
- New information will be useful to test models using radio, X-ray and gamma-ray data.

For example, Fermi data:

- → Cygnus Loop (Lorus+2021, MNRAS 500, 5177)
- → HB 21 (Pivato+2013, ApJ 779, 179)
- → W44 (Cardillo+2014, A&A 565, A74)

HB 21

In radio, SNRs have relatively flat, non-thermal spectra, with spectral indices -0.3 up to -0.7. At higher frequencies, the spectral index can be steeper.

Motivation

- The 10–100 GHz range is poorly exploited for the SNR description, particularly polarization.
- A SNR is our primary calibrator.
- New information will be useful to test models using radio, X-ray and gamma-ray emission.
- Previous studies reported excess of emission compatible with the AME.

QUIJOTE-MFI analysis:

- → W44 (Génova-Santos+2017, MNRAS 464, 4197)
- → W49 and W51 (Tramonte+2022, to be submitted)

Supernova Remnants: Goals

- Characterization of observational properties, in intensity and polarization, of SNRs in the MFI wide survey (which are not in other Quijote works).
- Modelling the Spectral Energy Distribution of intensity and polarization using the Quijote, WMAP, Planck, Ancillary and the literature data.
- Measure/constrain the spectral index, the spectral breaks and AME.

Name	ℓ [deg]	b [deg]	radii [arcmin]	Pol. in Quijote	Comments/Reference
Our SNRs can	didates				
CTB 80	68.8	+2.7	60, 80, 100	negligible	spectral breaks? (this work)
Cygnus Loop	74.2	-8.77	130, 140, 170	yes	This work
HB 21	89.0	+4.7	80, 100, 120	yes	spectral breaks (this work)
CTA 1	119.5	10.03	80, 100, 120	negligible	This work
Tycho	120.1	1.04	60, 80, 100	negligible	This work
HB9	160.4	2.8	90, 100, 120	low	This work
SNRs in other	Quijote w	orks			
W 44	34.5	-0.5	aperture phot	yes	AME (Génova-Santos+2017)
Tau A	184.5	-5.7	Beam fitting	yes	Calibrator (Ricardo)
Cas A	111.7	-2.1	Beam fitting	yes	Calibrator (Ricardo)
3C 58	130.8	3.1	60, 80, 100	yes	Fan Region (Beatriz)
W 49	43.2	-0.1	60, 80, 100	low	AME?? (Denis)
IC 443	189.06	3.2	60, 80, 100	yes	no AME (Denis)
W 51	49.1	-0.6	80, 100, 120	yes	no AME (Denis)

SNR in the MFI wide survey (WS)

SNR in the MFI wide survey (WS)

SNR in the MFI WS: Methodology and tests

Flux densities

- Aperture photometry method.
- Tests for uncertainty characterization:
 Random control apertures, Null test maps (half1, half2) and Noise simulations.

SED modelling

- MCMC approach.
- In general, we used a Power Law in intensity and polarization (both separately and combined).
- Spectral breaks are also considered.

Broken power law (sharp)

$$A_{o} \begin{cases} \left(\frac{\nu}{\nu_{o}}\right)^{\alpha_{bb}} &, \forall \quad \nu \leq \nu_{b} \\ \left(\frac{\nu_{b}}{\nu_{o}}\right)^{\alpha_{bb}} \left(\frac{\nu}{\nu_{b}}\right)^{\alpha_{ab}} &, \forall \quad \nu > \nu_{b} \end{cases}$$

Broken power law (smoothed)

$$A_o \left(\frac{\nu}{\nu_o}\right)^{\alpha_{\rm bb}} \left(\frac{1+(\nu/\nu_{\rm b})^m}{1+(\nu_o/\nu_{\rm b})^m}\right)^{\frac{\alpha_{\rm ab}-\alpha_{\rm bb}}{m}}$$

BPL (exponential cutoff)

$$S_{\nu} = A_o \left(\frac{\nu}{\nu_o}\right)^{-\alpha} e^{-\frac{\nu - \nu_o}{\nu_c}}$$

MFI results: Cygnus Loop

- Middle-aged SNR with a complex shell-type morphology.
- The biggest SNR (app. size \sim 4x3 deg²).
- The brightest SNR in X-ray and gamma-ray emission is also detected (Fermi).

MFI results: Cygnus Loop

Polarization at 1 deg FWHM. The polarization angle is almost uniform across the SNR.

MFI results: Cygnus Loop

Spectral Energy Distribution

- In intensity, $\alpha = -0.47 \pm 0.02$ agrees with previous works.
- In polarization, α_{pol} =-0.59±0.26 is in full agreement with α (intensity).
- The polarization fraction is 6.0%.

MFI results: HB 21

- Mixed morphology SNR, located at 0.8 kpc.
- In Pivato+2013, they assumed spectral break ($\Delta \alpha = 0.5$) and reported a β^{bb} =0.38±0.02 and \mathbf{v}_b =5.9±1.2 GHz.

Spectral Energy Distribution

- Broken PL is fitted in intensity and polarization (α^{ab} =-0.34, α^{bb} =-0.86).
- We obtained the spectral breaks properties ($\Delta \alpha = 0.52 \pm 0.06$).
- The polarization fraction is 5.0±0.2%.

MFI results: All SNR

Additional remarks

- *) In intensity, SED parameters are consistent with previous works.
- *) We confirm the spectral break for CTB80 and HB21.
- *) Thermal dust contribution comes from galactic emission.
- *) No evidence of AME contribution.

SNR	A_{AME} at 95% C.L.			
14	[Jy]	[%]		
CTB 80	≤ 2.8	≤ 19.7		
Cygnus Loop	≤ 2.4	≤ 7.0		
HB 21	≤ 3.9	≤ 11.3		
CTA 1	≤ 1.4	≤ 20.3		
Tycho	≤ 2.2	≤ 14.6		
HB 9	≤ 1.5	≤ 9.7		

Properties of SNRs

	INTPOL	Int	Pol	IntPol	Int	Pol	
		HB21		CTB80			
$A_{11.1}$ [Jy]	$58.1^{+2.5}_{-2.2}$	$56.1^{+2.2}_{-2.1}$	3.2 ± 0.2	$21.0^{+1.1}_{-1.0}$	$20.9^{+1.2}_{-1.1}$	0.8 ± 0.1	
П _{syn} [%]	5.0 ± 0.2	-	95	3.7 ± 0.3	-	70	
$\alpha_{ m bb}$	$-0.34^{+0.04}_{-0.03}$	-0.33 ± 0.04	(-)	$-0.24^{+0.07}_{-0.06}$	$-0.27^{+0.06}_{-0.04}$	DŽ	
α_{ab}	$-0.86^{+0.04}_{-0.05}$	$-0.80^{+0.04}_{-0.05}$	-1.02 ± 0.08	$-0.60^{+0.04}_{-0.05}$	$-0.70^{+0.10}_{-0.12}$	-0.52 ± 0.07	
ν _b [GHz]	$5.0^{+1.2}_{-1.0}$	$4.0^{+1.1}_{-0.8}$	242	$2.0^{+1.2}_{-0.5}$	$3.7^{+1.2}_{-1.7}$	2	
$ au_{353}$ [10^{-7}]	$143.7^{+69.8}_{-52.5}$	$146.0^{+69.7}_{-53.2}$	-	=	-	=	
<i>T</i> _d [K]	$12.5^{+2.6}_{-1.7}$	$12.2^{+2.4}_{-1.6}$	-	-	(e)	-	
$\beta_{\rm d}$	$2.04^{+0.49}_{-0.45}$	$2.15^{+0.47}_{-0.44}$	3.73	17	970	₩.	
$\chi^2_{ m dof}$	0.63	0.47	0.54	1.83	2.24	0.70	
638		Cygnus Loop		НВ9			
A _{11.1} [Jy]	44.6+1.0	44.6± 1.0	$2.9^{+0.6}_{-0.5}$	20.6± 0.7	20.7 ± 0.7	1.4 ± 0.1	
П _{syn} [%]	6.0 ± 0.4	20	-	6.9 ± 0.5	H <u>=</u> 0	21	
α	-0.47 ± 0.02	-0.47 ± 0.02	-0.59 ± 0.23	-0.51 ± 0.02	-0.50 ± 0.02	-0.60 ± 0.08	
$\tau_{353} [10^{-7}]$	$27.3^{+9.3}_{-7.1}$	$27.3^{+9.2}_{-7.2}$	-	$82.0^{+22.2}_{-16.9}$	$82.1^{+23.0}_{-16.9}$	+:	
$T_{\rm d}$ [K]	$15.8^{+2.1}_{-2.0}$	15.8± 2.1	9 7 8	14.9+1.6	$14.8^{+1.6}_{-1.7}$	<u>70</u>	
$\beta_{\rm d}$	$1.82^{+0.39}_{-0.30}$	$1.84^{+0.41}_{-0.31}$	1.70	$1.46^{+0.33}_{-0.25}$	$1.47^{+0.33}_{-0.25}$	-	
χ^2_{dof}	0.63	0.59	0.75	0.44	0.23	0.76	
		CTA1		Tycho			
A _{11.1} [Jy]	8.9 ± 0.6	9.0 ± 0.6	1.0 ± 0.2	12.9 ± 0.6	12.9 ± 0.6	$0.1^{+0.2}_{-0.1}$	
П _{syn} [%]	$9.4^{+1.2}_{-1.1}$	s=3	12	$0.0^{+1.5}_{-1.6}$	120	-0.1	
α	-0.50 ± 0.03	-0.50± 0.03	$-0.84^{+0.29}_{-0.27}$	-0.60 ± 0.02	-0.60 ± 0.02	$-1.57^{+1.29}_{-1.35}$	
$ au_{353} [10^{-7}]$	-	180		$119.3^{+28.3}_{-24.8}$	$119.6^{+28.3}_{-24.8}$	-1.55	
$T_{\rm d}$ [K]	5			14.7+1.4	$14.6^{+1.4}_{-1.3}$	-	
$\beta_{\rm d}$	2	2 320		2.19+0.40	2.19+0.40	2	
$\chi^2_{ m dof}$	0.39	0.25	0.45	0.45	0.69	0.02	

Summary and Conclusion

- Intensity and polarization of SED characterization for Cygnus Loop, HB21,
 CTB80, HB9, CTA1 and Tycho.
- In intensity, we confirm the spectral break for CTB80 and HB21.
- In intensity, the Anomalous Microwave emission is not detected. We provide only upper limits on its amplitude.
- Polarization fractions are between 4-10%. For Tycho, only upper limits are obtained.
- Polarization spectral indices are compatible with intensity spectral indices (except for CTA 1 and Tycho).
- Results to be included in López-Caraballo et al. (in prep). Stay tuned!

Comments and recommendations are welcome! email: clopez@iac.es

Thank you

