

# Observations of the full Northern sky at 10-20 GHz with the QUIJOTE experiment



### CMB anisotropies

#### Planck results







#### **ACDM** model

- Two main components: dark energy and dark matter
- 5% or ordinary matter
- Dark matter must be cold
- Universe with flat geometry

### ise willi flat geometry

#### **Concordance model**

- Astounding agreement with other observables
  - CMB
  - LSS
  - SNe Ia (accelerated expansion)
  - BBN

Type Ia SN observations



Type Ia SN constraints combined with other probes



Scolnic et al. (2018)

# CMB polarisation

#### **Inflation**

- Accelerated expansion in the Early Universe
- Leads to
  - Scalar perturbations ⇒ density perturbations
  - Tensor perturbations ⇒ primordial gravitational waves
- Predictions
  - Flat geometry ✓
  - Nearly scale-invariant perturbations ( $n_{\rm es}$ <1 but close to unity)  $\checkmark$
  - Nearly Gaussian perturbations in all scales ✓
  - Gravitational waves?
- Gravitational waves may create an specific pattern (B-mode) in the CMB polarisation

polarisation 
$$r=\frac{A_{\rm t}}{A_{\rm s}}=0.06\left(\frac{E_{\rm inf}}{10^{16}~{\rm GeV}}\right)^4$$



# CMB polarisation

#### **B-modes signal**

• Extremely faint signal (~nK level) in very large angular scales



- Extremely high sensitivities
  - Many detectors
  - Large bandwidths
- Exquisite control of instrument systematics (beams, instrumental polarisation, RFI, relative calibration, pointing accuracy....)
- Observations covering very large angular scales (difficult from Earth)
- Careful control characterisation and correction of Galactic foregrounds

#### Galactic foregrounds

| Foreground                      | Freq. range  | Polarised? |
|---------------------------------|--------------|------------|
| Free-free                       | low-freq     | no         |
| Synchrotron                     | low-freq     | ~10%       |
| Anomalous Microwave<br>Emission | intermediate | ?          |
| Thermal dust emission           | high-freq    | ~10%       |



Planck 2015 results X, 2016







# Teide Observatory

### **Previous CMB experiments**









#### Harrison et al. 2000















GroundBIRD

2019-

150 and 220 GHz

# Teide Observatory

### Current and future CMB experiments





CMB lab

# Teide Observatory









### Science with QUIJOTE-MFI



- Excellent complement to Planck/WMAP at low frequencies.
- Fills the gap between WMAP/Planck and low-freqs (C-BASS)
- Legacy value (→LiteBIRD)
- Goal: reach  $\sigma_{Q,U} \sim 10 \, \mu \text{K/deg}$  in the full northern-sky (dec>0°)

#### Observations MFI science phase

- Wide survey  $(11,000 \text{ h}) \rightarrow 10 \text{ Tb raw data}$
- Cosmological fields ( $\sim 3,000 \text{ deg}^2$ ) (6,500 h)
- Daily calibrators: Tau A, Cas A, Moon, sky dips and also Jupiter, Venus (~1,700 h)
- Galactic centre and the Haze (1,400 h)
- ρ-Ophiuchi molecular cloud (260 h)
- Perseus molecular cloud (750 h) → Génova-Santos et al. (2015)
- Fan and 3C58 (500 h)
- SNRs: W44, W49, W51, W63, IC443 (1,150 h) → Génova-Santos et al. (2017)
- Taurus (450 h)  $\rightarrow$  Poidevin et al. (2019)
- M31 (540 h)

Total: 26,000 hours of MFI data  $\rightarrow$  3 effective years  $\rightarrow$  50% efficiency between 2013 and 2018







### QUIJOTE-MFI scientific results



# MFI early results

scientific results

MFI wide survey

#### I. Measurements of the intensity and polarization of the AME in the Perseus molecular complex (Génova-Santos et al. 2015)

- II. Polarization measurements of the microwave emission in the Galactic MCs W43 and W47 and SNR W43 (Génova-Santos et al. 2017)
- III. Microwave spectrum of intensity and polarization in the Taurus MC complex and L1527 (Poidevin et al. 2019)

IV. A northern sky survey at 10-20 GHz with the Multi-Frequency Instrument (Rubino-Martín et al.)
 V. W49, W51 and IC443 SNRs as seen by QUIJOTE-MFI (Tramonte et al.)

VI. The Haze region and the Galactic Centre as seen by QUIJOTE-MFI (Guidi et al.)

VII. Galactic AME sources in the MFI wide survey (Poidevin et al.)

VIII. Component separation in polarization with the QUIJOTE-MFI wide survey. (de la Hoz et al.)

IX. Radio-sources in the QUIJOTE-MFI wide survey (Herranz et al.)

X. Polarised synchrotron loops and spurs. (Peel et al.)

XI. Spatial variability of AME parameters in the Galactic Plane (Fernández-Torreiro et al.)

XII. Analysis of the polarised synchrotron emission at the power spectrum level (Vansyngel et al.)

XIII. Intensity and polarization study of Supernova Remnants (López-Caraballo et al.)

XIV. The FAN region as seen by QUIJOTE-MFI (Ruiz-Granados et al.)

XV. The North Galactic Spur as seen by QUIJOTE-MFI (Watson et al.)

XVI. Component separation in intensity with the QUIJOTE-MFI wide survey (de la Hoz et al.)

Main paper and 5 other papers to be submitted in summer 2022

Maps will be publicly released once these papers are accepted for publication

Others

- Detection of spectral variations of AME with QUIJOTE and C-BASS (Cepeda-Arroita al. 2021)
- The PICASSO map-making code: application to a simulation of the QUIJOTE northern sky survey (Guidi et al. 2021)
- MFI data processing pipeline (Génova-Santos et al.)



### QUIJOTE-MFI early results



- Survey (194h,  $\approx$ 250 deg<sup>2</sup>) on the Perseus MC at 10-20 GHz
- Confirmation of AME intensity downturn at low frequencies
- $\Pi_{AME}$ <3.4% @ 18 GHz



#### W43, W44, W47

(Génova-Santos et al. 2017)

- 210h,  $\approx$ 400 deg<sup>2</sup>
- SNR in W44, both I,Q,U
  - $\beta_{\text{sync}} = -0.62 \pm 0.03$
- FR in W44
  - $RM = -404 \pm 49 \text{ rad/m}^2$
- Diffuse Galactic emission
  - $\beta_{\text{sync}} \sim -1.2$
- AME in W43
  - Π<sub>ΑΜΕ</sub><0.39% @ 17 GHz
  - Π<sub>ΑΜΕ</sub><0.22% @ 41 GHz



#### Taurus molecular complex

(Poidevin et al. 2019)

- 451h,  $\approx$ 289 deg<sup>2</sup>
- AME detections in the TMC and in L1527
  - Π<sub>AME</sub><4.2% @ 28.4 GHz, TMC
  - Π<sub>AME</sub><5.3% @ 28.4 GHz, L1527





Rubiño-Martín et al. (to be submitted)



- Full **Northern sky** (~29,000 deg<sup>2</sup>)
- Scans at constant elevation (12 deg/s)
- 11,000 hours (6,000 hours after data flagging)
- $\sigma_{Q,U} \sim 35-40 \ \mu \text{K/deg}$
- $\sigma_I \sim 60\text{-}150 \ \mu\text{K/deg}$





Rubiño-Martín et al. (to be submitted)







Rubiño-Martín et al. (to be submitted)







QUIJOTE 11 GHz (Q)



mK





WMAP 23 GHz (Q)







QUIJOTE 11 GHz (U)







WMAP 23 GHz (U)







### Pipeline, calibration and systematic effects

Génova-Santos, Rubiño-Martín et al. (in prep.)

#### Amplitude calibration

- External/global. Point sources (Tau A, Cas A)

  → 5% accuracy
- Internal gain modelling. Internal calibration diode  $\rightarrow$  <1%

#### • Polarisation angle calibration

• Tau A  $\rightarrow$  accuracy of **0.5**°

#### Beams and window functions

- On-sky with bright sources (Tau A, Cas A) and geostationary satellites (~30-40 dB)
- CST-simulations (agree with on-sky observations down o ~35 dB)

#### Pointing model

• Bright sources (Tau A) to fit a 7-parameter model

→ accuracy better than 1 arcmin

#### RFI and atmosphere

- Masking
- Mode at constant declination due to scanning strategy (affects *l*<15)
- PCA analysis on ~2h to identify commons signal between horns, and remove an atmospheric template.





More details in <a href="https://indico.ipmu.jp/event/380/contributions/5429/">https://indico.ipmu.jp/event/380/contributions/5429/</a>



Beams radial profiles

Horn 1

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Angular distance,  $\theta$  (deg)



187 186 185

184 183





### Scientific results. Polarised synchrotron (map-based)

de la Hoz et al. (to be submitted)

• Parametric component (B-SeCRET) combining QUIJOTE 11, 13 GHz, WMAP 23 and 33 GHz and Planck 30-353 GHz







### Scientific results. Polarised synchrotron (map-based)

- Significant detection of spatial variability of  $\beta_s$ 
  - $\bullet < \beta_s > = -3.08 \pm 0.13$
  - 2.6 times larger variability than found in Miville-Deschenes et al. (2008), and smaller mean  $\beta_s$



- The inclusion of QUIJOTE data reduces significantly the uncertainties on  $\beta_{\text{s}}$
- Detection of synchrotron curvature on the Galactic plane:
  - >  $3\sigma$  in some regions of the Galactic plane
  - $c_s = -0.0797 \pm 0.0012$  (when  $c_s$  is assumed to be constant on the sky)







#### Scientific results. AME characterisation

Poidevin et al. (to be submitted)

- Systematic study of 54 AME regions (including targets from Planck Intermediate Results XV 2014)
- Study of AME parameters in an statistical way

QUIJOTE-MFI improves the separation between AME and free-free leading to more AME



Clear correlation (90%) between AME/τ<sub>dust</sub> and radiation field G0 - seen in Tibbs et al. (2011, 2012) and in PIR XV (2014)



Clear correlation between the AME and the thermal dust peak amplitudes









#### Scientific results. AME characterisation

Fernández-Torreiro et al. (in prep.)

- Extension of the previous work to the full Galactic plane (|b|<10°)
- Detection of spatial variation of AME spectral properties along the Galactic plane

















#### Scientific results. Point sources

Herranz et al. (to be submitted)

- Systematic study of a catalogue of 782 sources in the QUIJOTE wide-survey maps
- Completness limit at 11 GHz ~1.8 Jy
- Study of polarisation properties of  $\sim 35$  sources  $\langle \Pi \rangle = [2.8, 4.7] \%$
- Blind variability search  $\rightarrow$  7 variable sources, with 3 being strongly variable



Variability of 3C454.3 in the four-period maps







### **Conclusions**











- CMB observations over the last  $\sim$ 25 years have allowed to consolidate the  $\Lambda$ CDM model
- Excellent agreement with other observables (LSS, SNIa) ⇒ concordance model
- Planck-satellite measured TT anisotropies to cosmic-variance limit
- Next frontier in CMB research is the detection of B-mode anisotropy from cosmic inflation
  - Requieres extremely high sensitivities and control of systematics
  - Exquisite control of Galactic foregrounds

#### • **QUIJOTE T1 + MFI (10-20 GHz): 2012-2018**

- Wide survey (Full Northern sky, ~29,000 deg², 11,000 h) completed
- Four maps at 11, 13, 17 and 19 GHz, with  $\sigma_{Q,U} \sim 35-40 \mu \text{K/deg}$
- 13 papers describing main scientific results, 6 to be submitted in ~1-2 months
- Maps to be released after the acceptance of these 6 paper  $\Rightarrow$  legacy value (LiteBIRD)
- Implications for foreground studies of QUIJOTE MFI data
  - <u>Synchrotron</u>. Spatial variability of β<sub>s</sub>. Curvature. Dust-synchrotron correlation ~20%
  - <u>AME</u>. Improved modelling (better AME/free-free separation). Polarisation constraints ( $\Pi_{AME}$ <0.22%)







