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Stability of the Standard Model

The Standard Model contains one scalar: the
Higgs field. We must then compute its
effective potential to assess whether the SM
is

■ Stable: the current minimum is the stable
minimum.

■ Metastable: the current minimum is
unstable but very long-lived.

■ Unstable: the current minimum is
unstable and very short-lived.
Incompatible with our existence!
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Stability of the Standard Model

Figure 1 Stability diagram of the SM. Ellipses showing 68%, 95% and 99% confidence regions based
on experimental errors on the pole masses.
From A. Andreassen, W. Frost, M. Schwartz. Phys. Rev. D 97, 056006.
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What is the lifetime of the Universe?

■ At high field values the Higgs potential is

V (h) ≈ λ(h)
4! h4 , λ(h) < 0 (1.1)

■ To compute the lifetime we must compute
the decay rate of the unstable vacuum
at h ≡ 0

■ Long history: Cabibbo et al. ’79, Isidori et
al. ’01, Andreassen et al. ’18, and many
others
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Decay rate and the effective action

■ We find the decay rate per unit volume

Γ
V

≈ |Jtr|d
∣∣∣e−Seff [φB ]+Seff [φFV]

∣∣∣ (2.1)

■ Computing the 1-loop 1PI effective action, we recover the known result

Seff [φB] − Seff [φFV] = S[φB] − S[φFV] + 1
2 Tr′ log G−1

B,0 − 1
2 Tr log G−1

FV,0 + . . .

⇒ Γ
V

≈
(

det′ S′′[φB]
det S′′[φFV]

)− 1
2

e−S[φB ]+S[φFV] (2.2)

■ However, we have to treat zero-modes more systematically!

Matthias Carosi | False Vacuum Decay beyond the quadratic approximation | 20/02/2025 5



Decay rate and the effective action

■ We find the decay rate per unit volume

Γ
V

≈ |Jtr|d
∣∣∣e−Seff [φB ]+Seff [φFV]

∣∣∣ (2.1)

■ Computing the 1-loop 1PI effective action, we recover the known result

Seff [φB] − Seff [φFV] = S[φB] − S[φFV] + 1
2 Tr′ log G−1

B,0 − 1
2 Tr log G−1

FV,0 + . . .

⇒ Γ
V

≈
(

det′ S′′[φB]
det S′′[φFV]

)− 1
2

e−S[φB ]+S[φFV] (2.2)

■ However, we have to treat zero-modes more systematically!

Matthias Carosi | False Vacuum Decay beyond the quadratic approximation | 20/02/2025 5



Decay rate and the effective action

■ We find the decay rate per unit volume

Γ
V

≈ |Jtr|d
∣∣∣e−Seff [φB ]+Seff [φFV]

∣∣∣ (2.1)

■ Computing the 1-loop 1PI effective action, we recover the known result

Seff [φB] − Seff [φFV] = S[φB] − S[φFV] + 1
2 Tr′ log G−1

B,0 − 1
2 Tr log G−1

FV,0 + . . .

⇒ Γ
V

≈
(

det′ S′′[φB]
det S′′[φFV]

)− 1
2

e−S[φB ]+S[φFV] (2.2)

■ However, we have to treat zero-modes more systematically!

Matthias Carosi | False Vacuum Decay beyond the quadratic approximation | 20/02/2025 5



Translational modes

■ The bounce can be centred at any point in
(Euclidean) spacetime

S′[φ(x0)
B ] = 0

→ S′′[φ(x0)
B ]∂x0φ

(x0)
B = 0 (2.3)

■ We must integrate over all posible
locations of the bounce∫

ddx0 |Jtr|d = βV|Jtr|d (2.4)
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Dilatational mode

■ Bounces of any size solve the equation of
motion because of scale invariance

S′[φ(x0,R)
B ] = 0

→ S′′[φ(x0,R)
B ]∂Rφ

(x0,R)
B = 0 (2.5)

■ We must integrate over all possible sizes
of the bounce∫ ∞

0
dR |Jdil| = ∞ (2.6)
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Curing the IR divergence

Old idea: Quantum corrections break classical scale invariance and should regulate the IR
divergence

Running of the coupling induces the R
dependence of the fluctuation determinant

■ [Isidori, Ridolfi, Strumia ’01] the integral is
dominated by bounces of the critical scale, i.e.
the fixed point of the one-loop running

■ [Andreassen, Frost, Schwarz ’18] Two-loop
running terms make the integral over R finite.
Leading logs at every loop are resummed into
the rate.

Compute quantum corrections of the
fluctuation spectrum

➡ use the 2PI effective action to set up
Schwinger-Dyson type of equations
□ [Bergner, Bettencourt ’03] in the Hartree

approximation

□ [Garbrecht, Millington ’18] local
approximation beyond Hartree

□ [MC, Garbrecht ’24] full 2-loop action
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Our work

What we do
■ develop a language to include systematically the quantum corrections to the background

and to the fluctuations to the desired order in perturbation theory

■ compute and renormalise the one-loop corrections to the propagator in the bounce
background

■ obtain numerical results for the 1- and 2-point functions for a two-dimensional toy model

What we do not do (yet)
■ obtain numerical results for the four-dimensional model of interest

■ compute the decay rate
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The 2PI effective action
■ Define a generating functional for the connected 1- and 2-point functions [see e.g.

Berges ’04, Introduction to Nonequilibrium QFT]

eW [J,R] = N
∫

[Dϕ] e
−SE [ϕ]−

∫
x

Jxϕy− 1
2

∫
x,y

ϕxRxyϕy (3.1)

■ Perform a Legendre transform to obtain the 2PI effective action

Γ2P I [φ, G] = W [J, R] −
∫

x

Jxφx − 1
2

∫
x,y

GxyRxy (3.2)

■ Do a perturbative expansion in loops

Γ2P I [φ, G] = SE [φ] + 1
2 Tr G−1

0 G − 1
2 Tr log G−1 + Γ2[φ, G] (3.3)
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The bounce equation of motion

The EoM for the 1pt function is easily obtained

δΓ2P I

δφ(x) = 0

=⇒ δSE [φ]
δφ(x) + ΠG(x)φ(x) + δΓ2

δφ
= 0 (3.4)

where

ΠG(x)φ(x) = 1
2V ′′′(φ(x))G(x, x) + c.t. (3.5)

Matthias Carosi | False Vacuum Decay beyond the quadratic approximation | 20/02/2025 11



The 2pt function equation of motion

The EoM for the connected 2pt function is obtained analogously

δΓ2P I

δG(x, y) = 0

=⇒ G−1
0 (x, y) − G−1(x, y) − Σ(x, y) = 0 (3.6)

having defined

Σ(x, y) = −2 δΓ2
δG(x, y) (3.7)
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The 2pt function equation of motion

■ The operator equation reads (we suppress indices for simplicity)

G = G0 + G0 Σ G (3.8)

■ Representing it diagrammatically makes it clear that G satisfying Eq. (3.8) is the
resummed propagator
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Expanding the self-energy

■ The term Γ2 contains all 2PI vacuum diagrams

−Γ2[φ, G] ⊃ + + +

(3.9)

■ The self-energy Σ is obtained by differentiation, i.e. cutting one leg

Σφ ⊃ + + + +
(3.10)
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A system of coupled equations

■ At 1-loop order we obtain a system of coupled non-linear integrodifferential equations

− ∆x φx + V ′(φx) + Πxφx = 0 (4.1)

(
− ∆x +V ′′(φx)

)
Gxy +

∫
z

Σxz Gzy = δ(d)
xy (4.2)

■ Let’s make use of the central symmetry of the problem to simplify the equations
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Angular momentum decomposition

■ Introduce an angular momentum decomposition (κ = d/2 − 1)

G(x, y) = 1
(rxry)κ

∑
j,{ℓ}

Yj,{ℓ} (Ωx) Yj,{ℓ} (Ωy) Gj(rx, ry) (4.3)

■ Split the self-energy into local and non-local contributions

Σ(x, y) = δ(d)(x − y)Π(x) + Σn.l.(x, y) (4.4)

■ Make a similar ansatz for the non-local term

Σn.l.(x, y) = 1
(rxry)κ

∑
j,{ℓ}

Yj,{ℓ} (Ωx) Yj,{ℓ} (Ωy) Σj(rx, ry) (4.5)
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A system of coupled equations

■ We get a system of ordinary integro-differential equations, though now we have infinitely
many of them, all coupled!

− 1
rd−1

d
dr

rd−1 d
dr

φ(r) + V ′(φ(r)) + Π(r)φ(r) = 0

(
−1

r

d
dr

r
d
dr

+ (j + κ)2

r2 + V ′′(φ(r)) + Π(r)
)

Gj(r, r′)

+
∫ ∞

0
dr′′ r′′ Σj(r, r′′) Gj(r′′, r′) = 1

r
δ(r − r′)

■ We can only solve this self-consistently, and we must truncate at some jmax
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A system of coupled equations: Hartree approximation

■ We get a system of ordinary integro-differential equations, though now we have infinitely
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dr
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dr
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dr
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dr
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The self-consistent procedure

Find the tree-level bounce  and 
Green’s functions 

φ(0)
B

G(0)
j

Compute the self-energies  and  

using  and 

Π(i) Σ(i)
j

φ(i)
B G(i)

j

Find the quantum bounce  and 
propagators 

φ(i+1)
B

G(i+1)
j

Converges?

NO YES
Solutions 

found!

φB , Gj
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Renormalising the tadpole

■ Take the potential

V (ϕ) = m2

2 ϕ2 + g

3!ϕ
3 + λ

4!ϕ
4 (4.8)

■ The local contribution to the self-energy is

Π(r) = λ

2 G(x, x) (4.9)

■ We must renormalise the coincident Green’s function

G(x, x) = 1
r2κ

∑
j,{ℓ}

Yj,{ℓ} (Ω) Yj,{ℓ} (Ω) Gj(r, r)

= 2
(4π)κ+ 1

2

1
Γ
(
κ + 1

2

) 1
r2κ

x

∞∑
j=0

(j + κ)Γ(j + 2κ)
Γ(j + 1) Gj(r, r) (4.10)
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Renormalising the tadpole

■ The UV divergence is due to the large angular momentum modes: use WKB to obtain
an expression for these

GWKB
j (r, r) = 1

2(j + κ)

(
1 −

m2
ϕ(r)r2

2(j + κ)2 + O
(
(j + κ)−4

))
(4.11)

■ We can use dim. reg. to regularise the sum

[G(x, x)]κ=1−ϵ = 1
2π2r2

∞∑
j=0

(j + 1)2
(
Gj(r, r) − GWKB

j (r, r)
)

+
[
GWKB(x, x)

]
κ=1−ϵ

= 1
2π2r2

∞∑
j=0

(j + 1)2
(
Gj(r, r) − GWKB

j (r, r)
)

− 1
16π2r2

[
m2

ϕ(r)r2

ϵ
+ 1

3 + m2
ϕ(r)r2 log 1

4e2r2µ2
]

(4.12)
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Renormalising the tadpole

■ We can then define the MS-renormalised coincident Green’s function

[G(x, x)]MS = 1
2π2r2

∞∑
j=0

(j + 1)2
(
Gj(r, r) − GWKB

j (r, r)
)

− 1
32π2r2

[1
3 + m2

ϕ(r)r2 log 1
4e2r2µ2

]
(4.13)

■ We can then obtain the on-shell one by subtracting the ϕ ≡ ϕFV result

[G(x, x)]OS = [G(x, x)]MS − [G(x, x)]MS
ϕ≡ϕFV

= 1
2π2r2

∞∑
j=0

(j + 1)2
[
Gj(r, r) − G0,j(r, r) +

(m2
ϕ(r) − m2)r2

4(j + 1)3

]

− 1
32π2 (m2

ϕ(r) − m2) log 1
4e2r2µ2 (4.14)
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Renormalising the bubble

■ Renormalising the bubble is much harder. It requires finding the divergent structure of
Σj defined by

G(x, y)2 =

 2
(4π)κ+ 1

2

Γ(2κ)
Γ
(
κ + 1

2

) 1
(rxry)κ

∞∑
j=0

(j + κ)Cκ
j (cos θ)Gj(rx, ry)

2

= 2
(4π)κ+ 1

2

Γ(2κ)
Γ
(
κ + 1

2

) 1
(rxry)κ

∞∑
j=0

(j + κ)Cκ
j (cos θ)Σj(rx, ry) (4.15)

■ After a long computation, we find

Σj(rx, ry) ≈
∑

q

q2Gq(rx, ry)Gq+j(rx, ry) ≈
∑

q

(
r<

r>

)2q (
1 + O(q−2)

)
(4.16)
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Renormalising the bubble

■ After a long computation, we find

Σj(rx, ry) ≈
∑

q

q2Gq(rx, ry)Gq+j(rx, ry) ≈
∑

q

(
r<

r>

)2q (
1 + O(q−2)

)
(4.17)

■ This means the divergence is indeed only local

Σj(rx, ry) ≈ 1
ϵ

δ(rx − ry) (4.18)

■ The divergence can be renormalised via local counter-terms
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Figure 2 Classical vs. self-consistent bounce in the Hartree approximation and full 2PI.
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Self-energy
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Figure 3 Tadpole and coincident bubble self-energy.
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Conclusions and outlook

Lessons learned (see 2411.18421)

✔ We can express the instanton method in terms of the effective action of the bounce

✔ We can use spherical symmetry to sum self-energy diagrams, even non-local ones, into
the propagator

✔ The Hartree approximation is, in general, not justified

Our next steps

➡ Run the numerics for the four-dimensional scale invariant theory and analyse the
renormalisations scale dependence of the renormalised determinant

➡ Compute the decay rate
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BACK-UP SLIDES
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The translational zero-mode

■ The fluctuation operator actually has a zero-mode, related to translational invariance.
Starting from the tree-level EoM

d
dr

(
− 1

rd−1
d
dr

rd−1 d
dr

φ(r) + V ′(φ(r))
)

= 0

=⇒
(

− 1
rd−1

d
dr

rd−1 d
dr

+ d − 1
r2 + V ′′(φ(r))

)
φ̇(r) = 0 (7.1)

■ There is d-many zero-modes in the j = 1 sector

■ Quantum corrections do not break translational symmetry, thus we should find(
− 1

rd−1
d
dr

rd−1 d
dr

+ d − 1
r2 + V ′′(φ(r)) + Π(r)

)
ϕtr(r)

+
∫ ∞

0
dr′′ r

′′d−1 1
r

′′ d
2 −1

Σj(r, r′′) ϕtr(r′′) = 0 (7.2)

Matthias Carosi | False Vacuum Decay beyond the quadratic approximation | 20/02/2025 28



Subtracting the zero-mode

■ The zero-modes are not propagating degrees of freedom and must thus be subtracted

OG⊥ = 1⊥ (7.3)

■ The operator 1⊥ is the identity on the orthogonal subspace to the one spanned by the
zero-modes

1⊥ = 1−
∑

i

ϕiϕ
∗
i (7.4)

■ This defines the subtracted Green’s function G⊥

■ Truncations of the effective action however, are known not to reproduce the correct
spectrum of zero-modes. The symmetry improved effective action is needed!
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Figure 4 Coincident limit of the Green’s function Gj(r, r). Plots taken from 2411.18421.
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