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First order phase transitions: overview | T,

Theory of decay of metastable state (“false vacuum”) covers a broad range of phenomena.

from boiling water to “boiling” vacuum of the Standard Model of particle physics

It plays an important role in various branches of physics. Boiling water

from quantum matter to cosmology

Studies of decay of metastable state (“false vacuum”) have more than a century long history.
| will focus on the developments in the context of high-energy physics

We will consider thermal first order phase transitions:

.y . sl s . Higgs vacuum decay: Midjourney
the initial state is local thermal equilibrium — one can assign a temperature 7.

Key observables: rate of decay, size of the “critical droplet” of new phase

water nucleation: MD simulation

K. K. Tanaka,; A. Kawano & H.Tanaka,
J. Chem. Phys. 2014
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Thermal first order phase transitions: milestonggL3 )

Theory
@ o Y/
e e\ N\
) ' Linde 1982 Decay of false vacuum at finite temperature:
od' Afflock 1980 tunnelling and thermal activation in field theory
@ ec
N\
6@(“’ Quantum-statistical metastability:
(\6“ Langer 1969 quantum particle in a metastable well
e
© Zeldovich 1942 ® Classical-statistical theory of metastability:
Kramers 1940: system of many d.o.f. coupled to external heat bath
s * .
Becker Doring 1935 Wigner 1937 Brownian motion of a classical particle
through the barrier at different viscosity
in “THE TRANSITION STATE METHOD”:

Gibbs 1875 saddle point, negative mode, zero modes

in “ON THE EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES”:
first discussion of the critical bubble, its size and free energy

{;‘. 7
= % A\
y B ) & ' @ v . O %
P a o\
&‘ S/ < . A Shkerin, Perimeter Institute 4

- -\ FyY N =7 Y %



\/\ /)

. . . . . -4
Motivation In particle physics and cosmology AT

@ First order phase transitions in the early universe GW signal

Nucleating, propagating and colliding bubbles generate gravitational waves (GWs). sensitivity of future
This is a motivation to improve the existing and build new GW detectors. experiments

@ Generation of baryon asymmetry of the universe

Expanding bubbles moving through cosmic plasma can generate asymmetry frequency
between particles and anti-particles.

- otential for the
@ Metastability of the Standard Model vacuum g SM vacuum

According to the measured values of the parameters of the Standard Model (SM),

our “fundamental” vacuum may itself be metastable.
We are here

In habitable parts of the present-day universe the decay probability is very small. Y ir::earlgey

. . . = 10
This may not be so in extreme environments (e.g. black holes) 0 -~ 107 GeV
or earlier epochs (e.g. inflation). R

@ Experimental tests of nucleation theory

Zenesini et al, Nature Physics 20, 558-563 (2024) — first experimental result using a cold atom system
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Thermal decay rate

Decay probability per unit time and volume is " = A(T)e ~3()

I exponential suppression — LO of WKB
prefactor — NLO of WKB

B(T) is computed using the stationary point of free energy (bounce)
A(T) is found by evaluating the determinant of small fluctuations around the bounce

B [ T') Typically, T, ~ ha)fv
\
\ Depending on the tunnelling potential, the
transition point can be smooth or only continuous.
\ We don’t know how the prefactor behaves around

this point: it may well be discontinuous.

vacuum suppression — [3,

Thermal activation - classical transitions

Tunneling - quantum transitions

-

0 T,

Exponential suppression of vacuum decay
as a function of temperature

free energy

nlll””

\ “reaction”
Decay of thermal \coordinate

metastable state

Affleck 80

Chudnovsky 92
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Classical thermal decay rate e ’

free energy
At T high (classical regime) but not too high (exponential — Boltzmann — suppression)

X
the decay happens via the special thermodynamic fluctuation: critical bubble. «\%

@ Sstandard thermal (Euclidean, equilibrium) theory predicts:

ulIIHH

Growth rate of the critical bubble’s unstable mode \ pd Free energy around the false vacuum \ “reaction”
_ ImF(T) Decay of thermal | coordinate
E e metastable state
T 7
Volume

To test the predictions of the Euclidean theory and to study dynamics of the phase transition, one can run

@ Real-time, classical, lattice simulations
They are applicable if occupation numbers of all relevant for the decay modes are big.

Such simulations have been employed for different purposes:

Gould, Moore, Rummukainen — Vacuum decay, “multi-canonical sampling” + real-time evolution
Alford, Feldman, Gleiser — Vacuum decay, Langevin dynamics
Grigoriev, Rubakov, Shaposhnikov — Sphaleron transitions, soliton pair production, Hamiltonian dynamics
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Setup &

' We take the scalar field theory in 1+1 dimensions, with quartic self-interaction, and discretize it

on the periodic lattice of size L with N sites and spacing a. This gives the following system: potenti
N-11]_2 212 4 I
il | m-g:  Ap; _ S
H=a |2 -~ + =201 ()= a (i = 2+ ) /0
: 2 2 2 4 . . ——/ |
i=0 lattice Laplacian ——, |
S =% | ¢
| 0 m/ﬂ l

The system is evolved according to equations:

¢l = ﬂi
{ it = (Ag);, — m*P; + A}

@ We prepare a suite of simulations with the initial state in thermal equilibrium around ¢ = 0.

— It has the (almost) Rayleigh-Jeans spectrum, one can set it up explicitly.

The leading effect of self-interaction is the thermal correction to the mass:

3AT AT
m;, =m-" — , <1
2m  m3

weak coupling condition

— It can also be set up implicitly, using Hamiltonian Monte-Carlo or Langevin evolution.

‘ We run the simulations until the decay happens (or time runs out)
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Measuring decay rate N,

@ Euclidean theory predicts:

2
in the continuum limit om Ey —E,/T Am3
I'ep = e E, = — barrier (critical bubble) energy

7w \V 2nT b™ 39

@ We measure the survival probability P, (1)

For decays obeying the exponential distribution, it follows the law: 1n Py, () = const — 'L - ¢

(we exclude early-time transients)

Euclidean Theory
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First surprise A

@ Euclidean theory predicts:

2
in the continuum limit om Ey —E,/T dm
I'ep = S E, = —— — barrier (critical bubble) energy

@ We measure the survival probability P, (1)

For decays obeying the exponential distribution, it follows the law: 1n Py, () = const — 'L - ¢

(we exclude early-time transients)

Simulation vs Euclidean Theory
0.00 T T T T

T~

\

\

1-10° _ 2.10°0 _ 3-10°
t

@® Decay rate found in simulations is smaller than the Euclidean prediction

® It is, moreover, time- dependent, getting even smaller with time
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What does it mean “thermal”? |
|\ -

For the Hamiltonian system, it means the following:

r.:
fe : & Short Fourier modes
Long Fourier modes
——————— e
0 m \|| 7 rla
uReIevant for the decaé Background for the long modes
SYSTEM O =

THERMOSTAT

But thermalisation here is very inefficient: for modes with @ ~ m ~ (bubble size)_l,

4
Qx) [ m?

AT

(due to 2 - 4 and 3 —» 3 scattering processes)

s> m !

its time scale is #;;, ~

Compare this with the decay time ¢, ~ (r'L)~!

In our simulations it happens that 7, > t,,.! This leads to the interesting effect...
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Classical Zeno effect S >

Att S t,,., the system is decoupled from the thermostat:

\
\ ‘.,
<> .
~ T
- 5
-, S
g
2, N
-

r;Long Eourier modes:' Short Fourier modes
——— e
0 m wla
(Jelevant for the decay Background for the long modes
SYSTEM L =
THERMOSTAT

T s is preserved during the simulation.

Simulations with higher initial 7, (due to statistical fluctuations) decay faster (on average).

—> Statistical properties of the ensemble change with time: long modes cool down.
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Classical Zeno effect S’

0.097 e all-modes {
B modes with k<2m

0.096 + ¥ modes-with-k<m

ol T3 .
o ! g

—e—
i

0 500 1000 1500 2000 2500
t

Effective temperature of long modes
for simulations whose lifetime is longer than t

@ Decay is a non-Markovian process (in this regime).
@ The longer we observe the system, the less chance it has to decay in the future: classical Zeno effect.

@ To find the unbiased rate, we extrapolate the slope of the survival probability curve to zero.
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Second surprise

Recall that I'(T") = A(T ))exp(—E,/T).

We measure the (unbiased) decay rate at different T and fit it with the formula

1
InI(T) = —ilanLlnA —

B <« critical bubble energy

I prefactor (with the zero mode excluded)

from the zero mode in the prefactor

In(F(T)/T(T+))

2 ¢ data
— fit
1 = = theory

N

. N

. BN

pa

80 85 9.0 95 100 105 11.0
#-1

Critical bubble energy agrees perfectly
with the Euclidean theory (<2% error bar)

A (Slm)/AE

0.18

0.16

0.14

0.12 1 >

0.10

0.08

80 85 9.0 95 10.0 10.5 11.0
F-1
The measured prefactor is smaller by
almost one order of magnitude.
Thermalization is still too slow?
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Langevin evolution

We would like to couple the theory to an external heat bath with the controlled coupling strength:

SYSTEM
( A
H———————T1k

0 m

L 2

(r R
EXTERNAL
HEAT BATH

L J

This is done by promoting the Hamiltonian equations of motion to the Langevin equation:

{ b=, (ED) =0, (EMOEW)) =55t —1)
7t = (AQ), — mqul- + /145,-3 — nm; + o¢; o> =2nTla
! !
I white noise by fluctuation-dissipation theorem

linear damping
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Main result A

S’

® No Zeno effectaslongasn > I'L.

@ As dissipation increases, I increases as well. It reaches maximum at n/m ~ 3 - 10_1,
then starts decreasing due to the over-damping of long modes.
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Decay rate at various dissipation and temperature
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Thermalization condition: conjecture AT

It looks like for the Euclidean theory to work, one must require:

In general, this is the effective free energy of
/the critical bubble

Ln S
th w T

]

Nucleation time Big factor

— All our results are consistent with it.

— The analog of this condition is known in physical chemistry studying systems with a few d.o.f. coupled to the heat bath.
Hanggi, Talkner, Borkovec, Rev.Mod.Phys. 62 (1990)
— It is unavoidably violated in weakly-coupled theories with one coupling (one field)

In 3+1 dimensions as well

— In theories with many species and couplings, it must be examined on a case-by-case basis.
Experience shows that it is not easy to satisfy it even in theories with many d.o.f.
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Discussion

@ We need a theoretical derivation of the thermal rate without relying on the Euclidean theory.

Work in progress...

@ Is the thermalization condition satisfied in real-life systems such as

— Standard Model thermal plasma in the early universe?
— liquid droplet nucleation in supersaturated vapours?

This is not obvious...
Work in progress...

@ How important are these results e.g. for cosmology?

If one needs an accurate prediction of the decay rate or for the effects pertaining to the dynamics of bubble
nucleation — these results are important.

Besides, they might be relevant for other non-perturbative processes such as sphaleron transitions or
production and collision of solitons.

Work in progress...

@ Can we measure the deviation from thermality in experiment?

-
-
a4 3 v,

4 "

S o
Amﬁ'z.w

‘ A. Shkerin, Perimeter Institute

L S



backup slides




Non-equilibrium dynamics of vacuum decay

When equilibrium is violated, interesting features appear in the field evolution prior to the decay.

—40 —20 0 20 40

At small dissipation, we observe a population of nonlinear waves with @ < m — oscillons.

They disappear when n > 0.1m and the system evolves due to the stochastic terms.
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Non-equilibrium dynamics of vacuum decay T,

Stacking many oscillons together, we get the average oscillonic precursor to the critical bubble:

0 n=~0 0 n=0.1 0 n=1
1.0 I 1.0
0.5 / 0.5
0.0 ﬁ:“* /\ / \ / 0.0 APy ™ 0.0 PerPeamiyig A A
V \\// \/ ‘

-1.0 -1.0 -1.0

1.0

0.5

-50 —40 -30 —20 -10 0 —30 —40 -30 —20 —10 0 —30 —40 -30 -20 —10 0

In our system, the presence of oscillons indicates violation of
thermal equilibrium near the barrier.

Thus, they are correlated with the diminishing decay rate.
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Thermalisation time

We perform the numerical experiment estimating the thermalisation time of long modes
in the Hamiltonian system.

(161°)

3.5

3.0

2.5

2.0

1.5

1.0

0.5

0.0— '1"0_1

The result agrees with the theoretical estimate 15, ~
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Thermalisation with external heat bath ( -

We perform the numerical experiment estimating the thermalisation time of long modes
with the Langevin evolution.

Tet A=10"3 Tett A=10"2
0.12 4 012 Ll L
0.10 MMWWW i 0.10
0.08 Vil 0.08 -
0.06 0.06 @
0.047 | 0.04
102 10 102 103
t t

Effective temperature of long modes (k < m, blue) and the
temperature of the ensemble (kK > m, red)

The result agrees with the estimate 7, ~ ;7_1.
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Box size and lattice spacing

In simulations, we take L = 100 and a ~ 0.01 (in units of mass).

The plots below demonstrate insensitivity of the decay rate to L and a.

Inl’ > . -\ .
T=01,7=0 n 1’ T=01,7=0

—13.0 —13.0
—13.5 —13.5
—14.0 ol e i}

% ¢ é 3 }
—14.5r1 —14.5
—15.0 —15.0

100 200 300 400 0.01 0.02 0.03 0.04 0.05
L a

We use this to put the upper bound on the systematic error of the decay rate measurement.

. e . 6 gul

( A. Shkerin, Perimeter Institute 4

- 1 ry 5 .7 L S



YA+
= AR 24 ¢
Accuracy of numerical scheme ( ’
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Hamiltonian dynamics

We use the 4th order pseudo-spectral, operator-splitting scheme.

The plots below show that it is enough to take i/a ~ 0.8 to achieve the relative energy non-
conservation < 1076,

O 106 0
’ 25 i
1 M}\M S 2.0 / ’
1.5
1 j

| l I v

AN | N | \
. N N\‘VM Nwl \WMW

_> -0.5
0 200 400 600 800 1000 70.0 725 75.0 77.5 80.0 825 850 87.5 90.0
t X
Relative energy variation Two decaying configurations evolved
from the same initial state, with
hla =04,0.8.
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Accuracy of numerical scheme A T,

Langevin dynamics

We use the 3rd strong order pseudo-spectral, operator-splitting scheme. Q2
2.4 7
We took it from [Telatovich, Li, 1706.04237] but corrected their mistake. 55 ///.//
// /‘/
The timestepis h/a ~ 0.25atn S 1and h/a ~ 0.1 aty > 1. =0 ///
" /
1.8 /:/
1.6 //,//,
Dispersion relation measured in simulations (black), compared : 1.4 /_r‘/ e
with the free (blue) and thermally-corrected (red) ones. 1o fﬂ‘“",,/
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