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2First order phase transitions: overview

Studies of decay of metastable state (“false vacuum”) have more than a century long history.
I will focus on the developments in the context of high-energy physics

A. Shkerin, Perimeter Institute

Theory of decay of metastable state (“false vacuum”) covers a broad range of phenomena.
from boiling water to “boiling” vacuum of the Standard Model of particle physics

It plays an important role in various branches of physics.
from quantum matter to cosmology

We will consider thermal first order phase transitions:  
the initial state is local thermal equilibrium — one can assign a temperature .T

Key observables: rate of decay, size of the “critical droplet” of new phase

water nucleation: MD simulation

Higgs vacuum decay: Midjourney

Boiling water

K. K. Tanaka, A. Kawano & H.Tanaka, 
J. Chem. Phys. 2014
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Gibbs 1875

first discussion of the critical bubble, its size and free energy

Wigner 1937

in “THE TRANSITION STATE METHOD”:

Langer 1969
Classical-statistical theory of metastability:  
system of many d.o.f. coupled to external heat bath

Affleck 1980
Quantum-statistical metastability:  
quantum particle in a metastable well

Linde 1982 Decay of false vacuum at finite temperature:  
tunnelling and thermal activation in field theory

Kramers 1940:
Brownian motion of a classical particle 
through the barrier at different viscosity 

A. Shkerin, Perimeter Institute

Thermal first order phase transitions: milestones

Becker Döring 1935


Zeldovich 1942


in “ON THE EQUILIBRIUM OF HETEROGENEOUS SUBSTANCES”:

saddle point, negative mode, zero modes

Benchmark Theory:
Classical Nucleation 

Theory

Transition State 
Theory

Euclidean, Thermal 

Field Theory



GW signal

frequency

sensitivity of future 
experiments

Motivation in particle physics and cosmology

First order phase transitions in the early universe 

Experimental tests of nucleation theory
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Metastability of the Standard Model vacuum

Generation of baryon asymmetry of the universe

Nucleating, propagating and colliding bubbles generate gravitational waves (GWs).

potential for the 
SM vacuum

energy 
 scale

We are here

1010 GeV0

In habitable parts of the present-day universe the decay probability is very small.

Expanding bubbles moving through cosmic plasma can generate asymmetry 
between particles and anti-particles.

Zenesini et al, Nature Physics 20, 558–563 (2024) — first experimental result using a cold atom system

A. Shkerin, Perimeter Institute

This is a motivation to improve the existing and build new GW detectors.

According to the measured values of the parameters of the Standard Model (SM), 
our “fundamental” vacuum may itself be metastable.

This may not be so in extreme environments (e.g. black holes) 
or earlier epochs (e.g. inflation).
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Exponential suppression of vacuum decay 
as a function of temperature

Γ = A(T )e−B(T )

prefactor — NLO of WKB
exponential suppression — LO of WKB

vacuum suppression →

Decay probability per unit time and volume is

Tunneling - quantum transitions

Thermal activation - classical transitions

 is computed using the stationary point of free energy (bounce)B(T )
 is found by evaluating the determinant of small fluctuations around the bounceA(T )

Depending on the tunnelling potential, the 
transition point can be smooth or only continuous.

We don’t know how the prefactor behaves around 
this point: it may well be discontinuous.

Typically, Tc ∼ ℏωfv

Affleck 80

Chudnovsky 92

Thermal decay rate

Decay of thermal 
metastable state

“reaction” 
coordinate

free energy

thermal jumps

tunnelling

A. Shkerin, Perimeter Institute



Real-time, classical, lattice simulations

6Classical thermal decay rate

Grigoriev, Rubakov, Shaposhnikov    — Sphaleron transitions, soliton pair production, Hamiltonian dynamics

Alford, Feldman, Gleiser                    — Vacuum decay, Langevin dynamics

Gould, Moore, Rummukainen            — Vacuum decay, “multi-canonical sampling’’ + real-time evolution

the decay happens via the special thermodynamic fluctuation: critical bubble.

 
They are applicable if occupation numbers of all relevant for the decay modes are big.

To test the predictions of the Euclidean theory and to study dynamics of the phase transition, one can run

Standard thermal (Euclidean, equilibrium) theory predicts: 

ΓE =
ω−

πT
ImF(T )

𝒱

Free energy around the false vacuum

Volume

Growth rate of the critical bubble’s unstable mode
Decay of thermal 
metastable state

“reaction” 
coordinate

free energy

thermal jumpsAt  high (classical regime) but not too high (exponential — Boltzmann — suppression)T

Such simulations have been employed for different purposes:

A. Shkerin, Perimeter Institute
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We take the scalar field theory in 1+1 dimensions, with quartic self-interaction, and discretize it 
on the periodic lattice of size L with  sites and spacing . This gives the following system:N a

Setup

We run the simulations until the decay happens (or time runs out)

m2
th = m2 −

3λT
2m

,
λT
m3

≪ 1

H = a
N−1

∑
i=0 [ π2

i

2
−

1
2

ϕi(Δϕ)i +
m2ϕ2

i

2
−

λϕ4
i

4 ] , (Δϕ)i = a−2(ϕi+1 − 2ϕi + ϕi−1)

·ϕi = πi

·πi = (Δϕ)i − m2ϕi + λϕ3
i

{

 

The system is evolved according to equations:

lattice Laplacian

 We prepare a suite of simulations with the initial state in thermal equilibrium around .ϕ = 0

 

— It has the (almost) Rayleigh-Jeans spectrum, one can set it up explicitly.

The leading effect of self-interaction is the thermal correction to the mass:

— It can also be set up implicitly, using Hamiltonian Monte-Carlo or Langevin evolution.

weak coupling condition

potential

ϕ
0 m / λ

A. Shkerin, Perimeter Institute



Measuring decay rate 8
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Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,

�i =
1p
L

N�1X

j=0

eikjxi �̃j , N ⌘ L

a
, kj ⌘

2⇡j

L
, (6)

with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
j =

2

a2
(1� cos akj) +m2

th , m2
th = m2 � 3�T

2m
. (8)

For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3

tth ⇠ (2⇡)3

m

✓
m3

�T

◆4

. (10)

For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.
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We measure the survival probability

For decays obeying the exponential distribution, it follows the law:

Euclidean Theory

(we exclude early-time transients)

A. Shkerin, Perimeter Institute

Euclidean theory predicts:

Thermal False Vacuum Decay Is Not What It Seems

Dalila P̂ırvu,1, 2, ⇤ Andrey Shkerin,1, † and Sergey Sibiryakov1, 3, ‡

1Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
2Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada

We study the decay of a thermally excited metastable vacuum in classical field theory using real-
time numerical simulations. We find a lower decay rate than predicted by standard thermal theory.
The discrepancy is due to the violation of thermal equilibrium during the critical bubble nucleation.
It is reduced by introducing dissipation and noise. We propose a criterion for the system to remain in
equilibrium during the nucleation process and show that it is violated in the Hamiltonian evolution
of a single field. In the case of many fields, the fulfillment of the criterion is model-dependent.

Introduction — The decay of a metastable state
(false vacuum) plays an important role in many branches
of physics. It corresponds to first-order phase transitions
in condensed matter systems and relativistic field theo-
ries [1, 2]. In cosmology, such phase transitions have been
extensively studied in the context of baryon asymmetry
generation [3] and as possible sources of gravity waves
[4–6]. The current electroweak vacuum of the Standard
Model may be metastable [7, 8], implying its decay in
the future. There are several proposals to realize false
vacuum decay using cold atom systems [9–16], and the
first successful experiment was reported in [17].

In many physical situations, the initial state of the
system is an equilibrium thermal state around the false
vacuum with some temperature T . The traditional ap-
proach to this case is based on the Euclidean path inte-
gral method [18–22], which relates the decay rate to the
imaginary part of the metastable vacuum free energy. At
high enough temperatures, the transition proceeds via
formation of a critical bubble – an unstable solution of
the classical field equations that can decay both to the
false and the true vacuum. It corresponds to the saddle
point of the potential barrier separating the two vacua.
The Euclidean approach then yields the decay rate in the
form [23],1

� =
!�
⇡T

· ImF

V , (1)

where !� is the growth rate of the critical bubble’s un-
stable mode and V is the volume of the system. The
imaginary part of the free energy in the false vacuum
contains the Boltzmann suppression by the critical bub-
ble energy, ImF / e�Eb/T , as well as the determinant of
the operator describing small fluctuations around it [24].

At !� ⌧ T ⌧ Eb, the result (1) can also be obtained
by purely classical methods. Langer [25] considered a
classical multi-dimensional statistical system with dissi-
pation and noise provided by an external heat bath and

⇤ dpirvu@perimeterinstitute.ca
† ashkerin@perimeterinstitute.ca
‡ ssibiryakov@perimeterinstitute.ca
1 We use the system of units c = ~ = kB = 1 and define the rate
as the probability of decay per unit time and volume.

controlled by the friction parameter ⌘. False vacuum de-
cay then occurs as a result of di↵usion in phase space, and
the solution of the corresponding Fokker-Planck equation
yields the rate [26],

� =
1

⇡T

 r
!2
� +

⌘2

4
� ⌘

2

!
· ImF

V , (2)

which reduces to (1) in the limit ⌘ ! 0.
The Euclidean approach can tell us little about the

dynamics of bubble nucleation. Instead, this can be cap-
tured by real-time numerical simulations [27–37]. These
have revealed rich phenomena, including oscillon precur-
sors and non-zero bubble velocities [38–42]. In this work,
we continue the real-time study of thermal false vacuum
decay, focusing on the precise determination of its rate.
Surprisingly, we find deviations from Eqs. (1), (2), which
signal a breakdown of thermal equilibrium during bubble
nucleation. We formulate the necessary condition for the
validity of the standard rate calculation and show that it
is generally violated in commonly studied field theories.
Setup — We consider a real scalar field in (1 + 1)

dimensions with the action

S =

Z
dt dx

✓
� (@µ�)2

2
� m2�2

2
+

��4

4

◆
, (3)

where � > 0. The false vacuum is located at � = 0, and
the true vacuum corresponds to the run-away � ! ±1.
The choice of the quartic potential is convenient since
it allows us to determine all quantities entering the Eu-
clidean prediction for the rate analytically. However, we
have verified that none of our conclusions rely on this
choice.
In the theory (3), the critical bubble profile, its energy

and the growth rate of its unstable mode are:

�b(x) =

r
2

�
· m

chmx
, Eb =

4m3

3�
, !� =

p
3m. (4)

Evaluating the critical bubble contribution to the free
energy (see Supplemental Material) and substituting it
into the Euclidean formula (1), one obtains the nucle-
ation rate:

�E =
6m2

⇡

r
Eb

2⇡T
e�Eb/T . (5)in the continuum limit

 

 

Eb =
4m3

3λ
— barrier (critical bubble) energy
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Below, we compare this expression with the results of
real-time numerical simulations.

Survival probability under Hamiltonian evolu-

tion — We discretize the action (3) on a periodic spa-
tial lattice with step a and length L using the second-
order finite-di↵erence approximation for spatial deriva-
tives. This leads to multi-dimensional Hamiltonian dy-
namics, whose classical equations are evolved using the
4th-order operator-splitting pseudo-spectral method [43].
Most runs are performed with a ' 0.012/m, L = 100/m,
and time step �t ' 0.8a. We have verified the con-
vergence of our results by varying the lattice param-
eters in the ranges ma 2 [5 · 10�3, 4 · 10�2], mL 2
[50, 400], �t/a 2 [0.4, 0.8]. The simulations were also
cross-checked with an independent code [42] based on a
10th-order Gauss-Legendre pseudo-spectral scheme, and
choosing ma = 0.04, mL 2 [80, 100] and �t ' 0.17a.

The initial conditions are picked up from an ensemble
of Gaussian perturbations around the false vacuum with
the thermal Rayleigh-Jeans spectrum. Namely, we de-
compose the field and its canonical momentum ⇡ ⌘ �̇ at
t = 0 in Fourier modes,

�i =
1p
L

N�1X

j=0

eikjxi �̃j , N ⌘ L

a
, kj ⌘

2⇡j

L
, (6)

with �̃⇤
j = �̃N�j , and similarly for ⇡i. The complex am-

plitudes �̃j , ⇡̃j are then drawn from independent Gaus-
sian distributions with the variances

h|�̃j |2i = T/⌦2
j , h|⇡̃j |2i = T . (7)

We include the thermal correction to the mass [44] in the
lattice mode frequencies,

⌦2
j =

2

a2
(1� cos akj) +m2

th , m2
th = m2 � 3�T

2m
. (8)

For the temperatures considered in our work this correc-
tion is ⇠ 15% and cannot be neglected.

We generate an ensemble of simulations with temper-
ature T and monitor them until they decay into the true
vacuum. At each moment of simulation time t, we count
the number of configurations that have not yet decayed.
The survival probability Psurv(t) is then defined as the
ratio of this number to the total initial number of con-
figurations in the ensemble. This measurement is re-
peated for several choices of temperature in the range
0.09 6 �T/m3 6 0.13. A typical result is shown by the
upper curve in Fig. 1.

For decays obeying the exponential distribution, the
survival probability follows the law

lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.
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m3
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For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
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lnPsurv(t) = const� �L · t . (9)

The dotted line in Fig. 1 shows such a curve, using the
Euclidean prediction (5) for the rate. We see a clear dis-
crepancy between the prediction and the real-time data,
which calls for an explanation.

FIG. 1. Blue thick: Survival probability in real-time simula-
tions of Hamiltonian dynamics for �T/m3 = 0.1. Blue dashed:
Straight line tangent to the previous curve at t = 0. Red thin:
Survival probability from Langevin dynamics (Eq. (13)), at
the same temperature and with ⌘ = 0.01m. Wiggles in the
curve correspond to Poisson fluctuations. Black dotted: Pre-
diction of the Euclidean theory.

Flattening of lnPsurv:‘Classical Zeno e↵ect’ —
The measured survival curve in Fig. 1 is not straight:
it flattens out as time increases, implying a decrease of
the decay rate. The reason for this behavior lies in the
dynamics of bubble nucleation. The critical bubble is
composed of long modes with wavenumbers k . m, while
most of the field energy is stored in shorter modes. The
latter provide a thermal bath for the former. However,
the energy exchange between di↵erent modes is ine�cient
[44]. In the model at hand, it is dominated by 2 $ 4 and
3 $ 3 scattering2. The corresponding thermalization
time is estimated as (see Supplemental Material),3

tth ⇠ (2⇡)3

m

✓
m3

�T

◆4

. (10)

For the temperatures in our simulations tth & 106/m
which is longer than the typical decay time tdec ⇠
(�L)�1 ⇠ 104/m. The initial power contained in the
long modes is then essentially preserved for each indi-
vidual simulation and controls its lifetime. A simulation
which, due to a statistical fluctuation, has a higher long-
mode power decays faster, while the one with lower power
lives longer.
This, in turn, biases the statistical properties of the

surviving ensemble. As the time goes on, the average
long-mode power decreases. The e↵ect is apparent in
Fig. 2, where we plot the e↵ective temperature of long
modes (defined as the variance of their canonical mo-
menta), averaged over the surviving configurations at

2 2 $ 2 scattering preserves the energy distribution due to (1+1)-
dimensional kinematics.

3 Its parametric form can be found on dimensional grounds by first
restoring ~ and then requiring that it drops o↵ tth in the classical
limit.

We measure the survival probability

For decays obeying the exponential distribution, it follows the law:
(we exclude early-time transients)

A. Shkerin, Perimeter Institute

Euclidean theory predicts:

Thermal False Vacuum Decay Is Not What It Seems

Dalila P̂ırvu,1, 2, ⇤ Andrey Shkerin,1, † and Sergey Sibiryakov1, 3, ‡

1Perimeter Institute for Theoretical Physics, 31 Caroline St N, Waterloo, ON N2L 2Y5, Canada
2Department of Physics & Astronomy, University of Waterloo, Waterloo, ON N2L 3G1, Canada

3Department of Physics & Astronomy, McMaster University, 1280 Main Street West, Hamilton, ON L8S 4M1, Canada

We study the decay of a thermally excited metastable vacuum in classical field theory using real-
time numerical simulations. We find a lower decay rate than predicted by standard thermal theory.
The discrepancy is due to the violation of thermal equilibrium during the critical bubble nucleation.
It is reduced by introducing dissipation and noise. We propose a criterion for the system to remain in
equilibrium during the nucleation process and show that it is violated in the Hamiltonian evolution
of a single field. In the case of many fields, the fulfillment of the criterion is model-dependent.

Introduction — The decay of a metastable state
(false vacuum) plays an important role in many branches
of physics. It corresponds to first-order phase transitions
in condensed matter systems and relativistic field theo-
ries [1, 2]. In cosmology, such phase transitions have been
extensively studied in the context of baryon asymmetry
generation [3] and as possible sources of gravity waves
[4–6]. The current electroweak vacuum of the Standard
Model may be metastable [7, 8], implying its decay in
the future. There are several proposals to realize false
vacuum decay using cold atom systems [9–16], and the
first successful experiment was reported in [17].

In many physical situations, the initial state of the
system is an equilibrium thermal state around the false
vacuum with some temperature T . The traditional ap-
proach to this case is based on the Euclidean path inte-
gral method [18–22], which relates the decay rate to the
imaginary part of the metastable vacuum free energy. At
high enough temperatures, the transition proceeds via
formation of a critical bubble – an unstable solution of
the classical field equations that can decay both to the
false and the true vacuum. It corresponds to the saddle
point of the potential barrier separating the two vacua.
The Euclidean approach then yields the decay rate in the
form [23],1

� =
!�
⇡T

· ImF

V , (1)

where !� is the growth rate of the critical bubble’s un-
stable mode and V is the volume of the system. The
imaginary part of the free energy in the false vacuum
contains the Boltzmann suppression by the critical bub-
ble energy, ImF / e�Eb/T , as well as the determinant of
the operator describing small fluctuations around it [24].

At !� ⌧ T ⌧ Eb, the result (1) can also be obtained
by purely classical methods. Langer [25] considered a
classical multi-dimensional statistical system with dissi-
pation and noise provided by an external heat bath and

⇤ dpirvu@perimeterinstitute.ca
† ashkerin@perimeterinstitute.ca
‡ ssibiryakov@perimeterinstitute.ca
1 We use the system of units c = ~ = kB = 1 and define the rate
as the probability of decay per unit time and volume.

controlled by the friction parameter ⌘. False vacuum de-
cay then occurs as a result of di↵usion in phase space, and
the solution of the corresponding Fokker-Planck equation
yields the rate [26],

� =
1

⇡T

 r
!2
� +

⌘2

4
� ⌘

2

!
· ImF

V , (2)

which reduces to (1) in the limit ⌘ ! 0.
The Euclidean approach can tell us little about the

dynamics of bubble nucleation. Instead, this can be cap-
tured by real-time numerical simulations [27–37]. These
have revealed rich phenomena, including oscillon precur-
sors and non-zero bubble velocities [38–42]. In this work,
we continue the real-time study of thermal false vacuum
decay, focusing on the precise determination of its rate.
Surprisingly, we find deviations from Eqs. (1), (2), which
signal a breakdown of thermal equilibrium during bubble
nucleation. We formulate the necessary condition for the
validity of the standard rate calculation and show that it
is generally violated in commonly studied field theories.
Setup — We consider a real scalar field in (1 + 1)

dimensions with the action

S =

Z
dt dx

✓
� (@µ�)2

2
� m2�2

2
+

��4

4

◆
, (3)

where � > 0. The false vacuum is located at � = 0, and
the true vacuum corresponds to the run-away � ! ±1.
The choice of the quartic potential is convenient since
it allows us to determine all quantities entering the Eu-
clidean prediction for the rate analytically. However, we
have verified that none of our conclusions rely on this
choice.
In the theory (3), the critical bubble profile, its energy

and the growth rate of its unstable mode are:

�b(x) =

r
2

�
· m

chmx
, Eb =

4m3

3�
, !� =

p
3m. (4)

Evaluating the critical bubble contribution to the free
energy (see Supplemental Material) and substituting it
into the Euclidean formula (1), one obtains the nucle-
ation rate:

�E =
6m2

⇡

r
Eb

2⇡T
e�Eb/T . (5)in the continuum limit

 

 

Eb =
4m3

3λ
— barrier (critical bubble) energy

First surprise

Simulation vs Euclidean Theory

Decay rate found in simulations is smaller than the Euclidean prediction 

It is, moreover, time-dependent, getting even smaller with time 



What does it mean “thermal’’? 10

For the Hamiltonian system, it means the following:

Compare this with the decay time tdec ∼ (ΓL)−1

In our simulations it happens that  ! This leads to the interesting effect…tth > tdec

A. Shkerin, Perimeter Institute

But thermalisation here is very inefficient: for modes with (bubble size) ,


its time scale is 

ω ∼ m ∼ −1

tth ≃
(2π)3

m ( m3

λT )
4

⋙ m−1

(due to           and            scattering processes)2 → 4 3 → 3

0

Long Fourier modes Short Fourier modes

Relevant for the decay Background for the long modes

k

Relevant  
sub-system ThermostatTHERMOSTAT
SYSTEM

π /am
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Simulations with higher initial  (due to statistical fluctuations) decay faster (on average).Teff

Statistical properties of the ensemble change with time: long modes cool down.

A. Shkerin, Perimeter Institute

0

Long Fourier modes Short Fourier modes

Relevant for the decay Background for the long modes

k

Relevant  
sub-system ThermostatTHERMOSTAT
SYSTEM

π /am

At , the system is decoupled from the thermostat:t ≲ tdec

 is preserved during the simulation.Teff
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(a) (b)

Figure 7: (a) Effective temperature of long modes, averaged over the surviving configurations at
time t. The temperature computed using all modes is also shown and is time-independent. (b)
Extrapolation of the time-dependent decay rate �t to t = 0, at several values of temperature. Solid
lines correspond to eq. (4.2) with best=fit parameters. fig:Teff

with smaller Te↵ are more likely to remain. We illustrate this on Fig. 7(a) which shows the
evolution of Te↵ , averaged over surviving simulations, with time.

It follows that the lowering with time decay probability can be associated with the
lowering effective temperature of long modes. The latter can be expanded as Te↵ ⇡ T̃ (1�↵t)

where one expects ↵ / �. Replacing T by Te↵ in eq. (1.1), we obtain an estimate for the
time-dependent decay rate at small �t:

ln�t = ln� �
Ẽb

T̃
↵t . (4.2){G(t)}{G(t)}

Note that since Ẽb/T̃ � 1, the effect becomes already significant at �t ⌧ 1, in agreement
with the result presented in Fig. 6.

To conclude, in cases when tdec < tth, a system that is observed not to decay within
a given time has a lower chance of decaying in the future. This resembles the Zeno effect,
which allows one to freeze the evolution of a quantum system by measuring its state. We
stress, however, that in our case, the effect is purely classical.

4.3 Unbiased rate

To compare the decay rate with the theoretical prediction, we need to measure it in the
unbiased canonical ensemble. Hence, we need to extrapolate the measured values �t at
different t to t = 0. To this end, we use eq. (4.2) with ln�, ↵ being the fitting parameters.

We proceed as follows. On a curve y = lnPsurv(t) take the points (t0 = 0, y0 = 0),
(t1, y1), (t2, y2), . . . , such that y1 � y0 = y2 � y1 = . . . . The points split the curve into
segments. Remove the first segment from the analysis to avoid the transient effects. Fit the
remaining segments by straight lines; denote by �i the (negative) slope of the line fitting
the ith segment. By identifying ln�(ti+ti+1)/2 = ln�i, we obtain a series of points for the
2-parameter fit. The fit gives us the logarithm of the unbiased decay rate ln�.

– 15 –

Effective temperature of long modes
for simulations whose lifetime is longer than t

Decay is a non-Markovian process (in this regime).

The longer we observe the system, the less chance it has to decay in the future: classical Zeno effect.

To find the unbiased rate, we extrapolate the slope of the survival probability curve to zero.

A. Shkerin, Perimeter Institute
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(a) (b)

Figure 8: (a) Decay rate data points ln�(T̃ ) and line (4.4) with the best-fit value of Ẽb (black
solid) against the prediction of the Euclidean theory (red dashed). (b) Decay rate data points and
the measured value of the prefactor A(exp) (black) with 1� deviation (blue). fig:E_sph

Let us estimate the error of the decay rate measurement. For each probability curve,
we have ⇠ 100 decay events per curve segment. The measurement uncertainty within each
segment is ⇠ 10% and dominated by statistics; it can be estimated as (see Appendix D for
details)

�ln�i =
1

p
Ni

, (4.3){sigma_lnG}{sigma_lnG}

where Ni is the number of decay events in the time range ti < t < ti+1. The error of the
extrapolated value �ln� is obtained from the errors �ln�i using the linear regression. The
extrapolating procedure is illustrated in Fig. 7(b).

4.4 Comparison with the Euclidean prediction

We do the above procedure for 9 values of temperature spanning the interval 0.09 6 T̃ 6
0.13 and obtain the function �(T̃ ), which we fit by the expression

ln�(T̃ ) = �
1

2
ln T̃ + lnA �

B

T̃
(4.4){log_G(T)}{log_G(T)}

with free parameters A and B. The first term on the right accounts for the temperature
dependence of the prefactor predicted by eq. (2.6).

First, we measure the value B associated with the barrier height. To this end, we
take the ratio ln

⇣
�(T̃ )/�(T̃⇤)

⌘
with T̃⇤ = 0.11. The fit is shown in Fig. 8(a). It gives

B/Ẽb = 0.98 ± 0.02, thus confirming the prediction of the Euclidean theory with accuracy
⇡ 2%. Note that the bubble energy receives no thermal loop corrections, cf. [24, 25, 33].

Next, we measure the parameter A associated with the prefactor. We equate B to its
theory value Ẽb in eq. (4.4) and extract A at different values of temperature. The ratio
of the result to the Euclidean prediction of eq. (2.6) is shown in Fig. 8(b). The ratio is

– 16 –

3

FIG. 2. E↵ective temperature Te↵ = h|⇡̃j |2ikj<k⇤ of long
modes for k⇤ = m and k⇤ = 2m, averaged over the surviving
configurations at time t. The temperature computed using all
modes is also shown and is time-independent.

time t. The e↵ective temperature decreases by a few per
cent during the run, enough to considerably suppress the
bubble nucleation rate. Rather unexpectedly, the decay
happens to be non-Markovian: a system that is observed
not to decay within a given time has a lower chance of
decaying in the future. This is reminiscent of the Zeno
e↵ect, which allows one to freeze the evolution of a quan-
tum system by measurements. We stress, however, that
in our case, the e↵ect is purely classical.

The drift in the rate is expected to disappear when the
decay is slow enough so that the condition tdec � tth is
satisfied. This condition is likely fulfilled in most cosmo-
logical settings. On the other hand, whether it holds in
laboratory experiments, especially in those using (1+1)-
dimensional systems, is less evident. In this case, the
classical Zeno e↵ect should be taken into account.

Unbiased rate — For quantitative comparison with
the Euclidean prediction (5), we measure the slope
d lnPsurv/dt at t ! 0 corresponding to the rate in the
initial unbiased ensemble. We use an extrapolation pro-
cedure to increase the accuracy. The probability curve
is split into small, approximately linear segments, and
the slope of each segment is measured. The logarithms
of the slopes thus obtained are fitted with a linear func-
tion of time whose value at t = 0 yields the logarithm of
the unbiased rate �. Its error is dominated by statistical
uncertainty. Repeating the procedure at di↵erent tem-
peratures, we obtain the function �(T ), which we fit by
the expression,

ln�(T ) = �1

2
lnT + lnA� B

T
, (11)

with free parameters A and B. The first term on the right
accounts for the temperature dependence of the prefactor
predicted by Eq. (5).

First, we eliminate the unknown constant A by taking
the ratio �(T )/�(T⇤) with T⇤ from the middle of the in-
terval and determine the slope B. The fit is shown in the
top panel of Fig. 3. It gives B/Eb = 0.98± 0.02 with Eb

FIG. 3. Top: The ratio of unbiased decay rates fitted using
Eq. (11). The dashed line is the Euclidean theory predic-
tion. Bottom: Prefactor extracted from real-time simula-
tions A(sim) vs. Euclidean prediction AE . The horizontal
band shows the average and the corresponding 1� error bar.

from Eq. (5), consistent with the predicted Boltzmann
suppression. Note that the bubble energy receives no
thermal loop corrections, cf. [33, 34, 45].
Next, we measure the prefactor. We fix B = Eb in

Eq. (11) and extract A at di↵erent values of temperature.
The ratio of the result to the Euclidean prediction of
Eq. (5) is shown in the bottom panel of Fig. 3. The mea-
sured prefactor A(sim) is smaller than the prediction AE

by a factor ⇠ 8. The ratio is temperature-independent
within the error bars. Thus, we can combine the data at
di↵erent T to obtain

A(sim)/AE = 0.13± 0.01 . (12)

The discrepancy cannot be attributed to two-loop correc-
tions, which are expected to a↵ect the prefactor only at
the �T/m3 ⇠ 10% level. The independence of the ratio
A(sim)/AE of T further rules out this interpretation.
Decay with an external heat bath —To investigate

the system further, we artificially reduce its thermaliza-
tion time by coupling it to an external heat bath. This
is implemented by promoting the equation of motion to
the Langevin equation,

�̈+ ⌘�̇� �00 +m2�� ��3 = ⇠ , (13)

where ⌘ is the friction coe�cient and ⇠(t, x) is the
white noise, whose amplitude is fixed by the fluctuation-
dissipation theorem:

h⇠(t, x)⇠(t0, x0)i = 2⌘T �(t� t0)�(x� x0) . (14)

We solve this equation numerically using a 3rd-order
stochastic pseudo-spectral operator-splitting scheme [43,
46]. The initial conditions are still set by Eqs. (6) and

We measure the (unbiased) decay rate at different  and fit it with the formulaT

prefactor (with the zero mode excluded)

from the zero mode in the prefactor

critical bubble energy

Critical bubble energy agrees perfectly  
with the Euclidean theory (<2% error bar)

The measured prefactor is smaller by 
almost one order of magnitude. 

Thermalization is still too slow?

A. Shkerin, Perimeter Institute

Recall that .Γ(T ) = A(T )exp(−Eb /T )
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This is done by promoting the Hamiltonian equations of motion to the Langevin equation:

temperature-independent within error-bars. Thus, we can combine the data at different T̃

and obtain
A(sim)/AE = 0.13 ± 0.01 . (4.5){Aration}{Aration}

We see a factor ⇠ 8 discrepancy in the prefactor between the real-time simulations and
the Euclidean theory. To cross-check this result, we perform the two-parameter fit of the
function �(T̃ ) using eq. (4.4). It gives the same values for A and B within error bars.

The observed discrepancy cannot be attributed to two-loop corrections, since the latter
are expected to affect the prefactor only at the T̃ ⇠ 10% level. It cannot be due to the
classical Zeno effect either, since the change in the effective temperature of long modes
is too small to account for it. Finally, as we show in next Section, it cannot be due to
unknown systematics in the preparation of the initial state.

We have already identified the reason for the discrepancy. It lies in the fact that the
theory (2.1) does not have an efficient thermalisation mechanism between the relevant for
the decay degrees of freedom (long modes) and the rest of the system (short modes, or
thermostat). The system is prepared in equilibrium around the false vacuum, but it runs
out of equilibrium near the barrier. As a result, the Euclidean prefactor is not reproduced.

We conjecture that the necessary condition for equilibrium near the barrier is provided
by eq. (1.2). Comparing with eq. (3.10), we see that the condition is always violated if the
theory is at weak coupling, T̃ ⌧ 1. As discussed above, this appears to be a general feature
of a theory with just one coupling parameter. Nevertheless, we would like to verify that
decreasing tth leads to alleviation of the discrepancy between the true and Euclidean rates.
To this end, we presently couple the system to an external thermostat.

5 Thermal transitions with the Langevin evolution
sec:simL

5.1 Enhancing thermalisation rate

We would like to bring more evidence for the crucial role equilibration processes play in
vacuum decay. To this end, we couple the theory (2.1) to an external heat bath. By varying
the coupling strength, one can change tth in the vicinity of the barrier. We will see that
this has a profound effect on the dynamics and the rate of decay.

To model the effect of the external ideal thermostat, we introduce stochastic terms into
the field’s classical equation of motion. Namely, we promote it to the Langevin equation

'̈+ ⌘'̇ � '00 + ' � '3 = ⇠ , (5.1){LangEq}{LangEq}

where ⌘ is the dissipation coefficient, and ⇠ = ⇠(t, x) is a white noise satisfying

h⇠(t, x)i = 0 ,
⌦
⇠(t, x)⇠(t0, x0)

↵
= 2⌘T̃ �(t � t0)�(x � x0) , (5.2){Noise}{Noise}

in agreement with the fluctuation-dissipation theorem. Every Fourier mode of the field ' is
now coupled to the external heat bath, and their thermalisation rate is set by the dissipation
coefficient rather than self-interaction:

tth ⇠ ⌘�1 . (5.3){t_therm_eta}{t_therm_eta}

– 17 –

·ϕi = πi

·πi = (Δϕ)i − m2ϕi + λϕ3
i − ηπi + σξi

{ ⟨ξi(t)⟩ = 0 , ⟨ξi(t)ξj(t′￼)⟩ = δijδ(t − t′￼)

σ2 = 2ηT/a

A. Shkerin, Perimeter Institute

0
k

EXTERNAL  
HEAT BATH

SYSTEM

m

We would like to couple the theory to an external heat bath with the controlled coupling strength:

linear damping
white noise by fluctuation-dissipation theorem
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 No Zeno effect as long as .η ≳ ΓL

A. Shkerin, Perimeter Institute

Langer’s classical-statistical theory

Decay rate at various dissipation and temperature

10°3 10°2 10°1 100 101

¥̂
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0.13

η/m

As dissipation increases,  increases as well. It reaches maximum at , 
then starts decreasing due to the over-damping of long modes.

Γ η/m ≃ 3 ⋅ 10−1 



Thermalization condition: conjecture 16

— It is unavoidably violated in weakly-coupled theories with one coupling (one field)

— In theories with many species and couplings, it must be examined on a case-by-case basis.

A. Shkerin, Perimeter Institute

Experience shows that it is not easy to satisfy it even in theories with many d.o.f.

In 3+1 dimensions as well

It looks like for the Euclidean theory to work, one must require:

Big factorNucleation time

tth ≲
1

ω−

Eb

T

In general, this is the effective free energy of 
the critical bubble

Hanggi, Talkner, Borkovec, Rev.Mod.Phys. 62 (1990)

— The analog of this condition is known in physical chemistry studying systems with a few d.o.f. coupled to the heat bath.

— All our results are consistent with it.
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If one needs an accurate prediction of the decay rate or for the effects pertaining to the dynamics of bubble 
nucleation — these results are important.

Besides, they might be relevant for other non-perturbative processes such as sphaleron transitions or 
production and collision of solitons. 

A. Shkerin, Perimeter Institute

We need a theoretical derivation of the thermal rate without relying on the Euclidean theory.

— Standard Model thermal plasma in the early universe? 
— liquid droplet nucleation in supersaturated vapours?

Is the thermalization condition satisfied in real-life systems such as

This is not obvious…

 

Work in progress…

 Can we measure the deviation from thermality in experiment?

 How important are these results e.g. for cosmology?

Work in progress…

 
Work in progress…
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Figure 12: Typical evolution of the field preceding the critical bubble formation at (t, x) = (0, 0).
We take T̃ = 0.13. Left: In the case of no dissipation and noise (⌘ = 0) we see several non-linear
waves—oscillons—propagating in the background of short, linear ultra-relativistic modes. Here,
one of the oscillons ‘collides’ with a larger-amplitude thermodynamic fluctuation, which appears
to trigger the decay event. Middle: In the case of moderate dissipation (⌘ = 0.1), the oscillonic
precursor to the critical bubble is still visible but does not survive beyond one or two oscillation
lengths. Right: Finally, at large dissipation (⌘ = 1) there remain no long-wavelength propagating
structures in the system. fig:2dsph

We run a series of simulations of the lattice �'4-theory and record the field history over
a large time interval preceding the decay. It is instructive to compare the histories obtained
at different values of the dissipation coefficient. Fig. 12 shows typical field profiles '(t, x)

for three values of ⌘. Recall that prior to the decay, most of the field’s energy is contained
in its freely-propagating, short, relativistic modes. Apart from these linear waves, at ⌘ = 0

we observe a population of slower-moving non-linear waves. They are quasi-periodic and
oscillate at low frequencies !o < 1. One of these waves eventually gives rise to the critical
bubble. At moderate dissipation, ⌘ ⇠ 0.1, the non-linear structures are still visible, but
they decohere and dissipate over a time comparable to their oscillation period. Finally, in
the diffusive limit, ⌘ & 1, the propagating non-linear structures disappear.

The non-linear waves, which populate the system at small dissipation and noise, are
known as oscillons [38]. They are localised, long-living solutions of classical equations of
motion, arising in theories with anharmonic potentials [39–42]. In cosmology, they have
been extensively studied as a part of non-equilibrium processes involving scalar fields, such
as the inflaton field, in the early Universe [43–48]. In false vacuum decay, the role of
oscillons as ‘precursors’ to the critical bubble has also been investigated before [26, 27, 49–
51]. Here we point out that oscillons are a part of non-equilibrium dynamics of the system,
on its way from an initially thermal state to the critical bubble formation. Their presence
is a consequence of inefficient thermalisation, tth > 2⇡/!�1

o . The strong coupling to the
thermostat, which is necessary for the validity of the Euclidean formalism, erases any such
coherent objects.

It is interesting to implement a quantitative test for the presence of the oscillonic
precursor. We proceed as in Ref. [27] and first produce the instantaneous envelope of each
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Non-equilibrium dynamics of vacuum decay
When equilibrium is violated, interesting features appear in the field evolution prior to the decay.

At small dissipation, we observe a population of nonlinear waves with  — oscillons.ω < m
They disappear when  and the system evolves due to the stochastic terms.η > 0.1m
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Figure 13: Oscillonic precursor to the critical bubble reconstructed from simulations, at T̃ = 0.13.
Each plot is the averaging over 200 realisations. fig:oscs

field configuration preceding the decay. For the real field, this is equivalent to the following
procedure. First, we remove the field average, so that h'̃(x, t)i = 0 over the region of
interest, e.g. the configurations shown in Fig. 12. Next, we take the Fourier transform
along the time dimension. We set the amplitude of the negative-frequency Fourier modes
to zero, and double the amplitude of the positive-frequency modes to conserve the energy.
Taking the inverse temporal-domain Fourier transform, we arrive at the Hilbert transform.
Finally, the signal envelope is simply the absolute value of this transform.

Starting from the space-time coordinates of each decay event, we trace backwards in
time along the envelope the trajectory (xosc, tosc) of the maximum peak. For each simu-
lation, we take the field amplitude '̃(xosc, tosc) along the resulting trajectories, and stack
them with respect to the reference nucleation time at t = 0. Examples of the average
precursors resulting from this procedure are shown in Fig. 13 for three values of the dissipa-
tion coefficient ⌘. The lifetime of the oscillon is clearly correlated with ⌘. The correlation
between the false vacuum decay suppression and presence of oscillons is worth exploring
further.

7 Discussion and conclusion
sec:concl

It has been clear that the Euclidean approach is not applicable when the initial state of the
system is not described by the thermal density matrix. For example, such is the situation
with black holes creating (almost) thermal but spatially anisotropic flux of radiation [52].
The discrepancy with the Euclidean decay rate in this case is already at the level of the
main exponential suppression [53–56]. In this paper we have pointed out that even if the
initial state is thermal, the discrepancy can still take place, albeit at the level of prefactor,
if the relevant degrees of freedom near the barrier are not coupled ideally to the thermostat.
The Euclidean rate then represents an upper bound which may never be reached in real
systems.

Our results have potential applications in cosmology (phase transitions in the Early
Universe and after freeze out) and condensed matter (experimental tests of false vacuum
decay in quantum simulators [15–17]).
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Stacking many oscillons together, we get the average oscillonic precursor to the critical bubble:

In our system, the presence of oscillons indicates violation of 
thermal equilibrium near the barrier.
Thus, they are correlated with the diminishing decay rate.

Non-equilibrium dynamics of vacuum decay
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(a) (b)

Figure 3: Thermalisation of long modes in the classical lattice theory (3.2), using the ensemble
of 100 simulations. (a) The initial spectrum (black) and the final spectrum (blue) at t = 5 · 106.
(b) The effective temperature (3.6) of the long modes with k < m (blue) and of the modes with
k > m (red). The width of the lines represents statistical uncertainty. In this simulation we take
Lm = 100, N = 2048. fig:therm

k < m is reduced artificially by a factor of 2, so that their effective temperature becomes
Te↵ = ah|⇡̃j |2ik<m = T̃ /2. The modified spectrum is shown in Fig. 3(a). We evolve the
resulting ensemble for a long time tsim ⇠ 107, and observe how the energy transfer from
the nearby modes with k > m restores the long modes power. The result of the experiment
is shown in Fig. 3(b). We see that Te↵ changes noticeably on the time scale t ⇠ 105, in
agreement with eq. (3.10). On a much longer time scale t & 107, it reaches the temperature
of the thermostat, and the equilibrium is restored.

These results agree with the previous studies of non-equilibrium dynamics in the �'4-
theory, which also reveal very long thermalisation times [32, 35]. Note that slow thermali-
sation is not a peculiarity of a (1 + 1)-dimensional theory, but is a feature of any one-field
theory at weak coupling. For example, the �'4-theory in 3 + 1 exhibits similar behavior
[35]. We conclude that the model (3.2) does not admit an efficient thermostat, and this
impacts the dynamics and rate of vacuum decay.

4 Thermal transitions in the Hamiltonian system
sec:sim

4.1 Critical bubble profile
ssec:sph

We begin the analysis of false vacuum decay in the classical lattice model (3.2). One of
the most important predictions of Euclidean theory is the shape of the critical bubble. We
would like to reconstruct it from our simulations and compare with eq. (2.3).

We use two independent reconstruction methods. Each method begins with preparing
an ensemble of states according to eq. (3.4). The states are then evolved until a decay is
detected (or until simulation timeout). The decay event is identified where and when the
absolute field amplitude exceeds a threshold value, |'̃| > 10. The field evolution across the
potential barrier is recorded, its dynamics prior to the decay and the growth of the bubble
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Initial and final spectra Effective temp. of long modes ( , 
blue) vs temp. of all modes (red)

k < m

We perform the numerical experiment estimating the thermalisation time of long modes 
in the Hamiltonian system.

The result agrees with the theoretical estimate

This observable is useful when the system deviates from equilibrium, and the difference
between Te↵ and T̃ is a measure of such a deviation.

3.3 Thermalisation of long modes
ssec:therm

We mentioned in Sec. 1 that the dynamics of thermal false vacuum decay crucially depends
on the rate of thermalisation between the thermostat and the relevant degrees of freedom
near the barrier. Hence, it is important to estimate the thermalisation time tth in the model
(3.2), which we do below, both analytically and numerically.

One can find tth by considering the Boltzmann equation for particle phase-space density
fp, see e.g. [36]. For clarity, let us restore the mass and coupling constant for the moment.
In (1 + 1) dimensions the leading processes resulting in the energy exchange between the
particles are the 2 $ 4 and 3 $ 3 scatterings which give comparable contributions into the
collision integral.3 For concreteness, let us focus on the former. Denoting the momenta of
incoming particles by p1, p2, we have

@fp1
@t

'
1

2!p1

Z
d~p2d~p3d~p4d~p5d~p6

(2⇡)52!p22!p32!p42!p52!p6

(2⇡)2�(2)(p1 + p2 � p3 � p4 � p5 � p6)|A2!4|
2

⇥

h
�fp1fp2(1 + fp3)(1 + fp4)(1 + fp5)(1 + fp6) + (1 + fp1)(1 + fp2)fp3fp4fp5fp6

i
.

(3.7)

Assume for simplicity that all particles have comparable momenta of order p. Then the
scattering amplitude is A2!4 ⇠ �2/!2

p, and the dominant contribution from the Bose-
enhancement factor is f5

p ⇠ (T/!p)5. This yields,

1

fp

@fp
@t

⇠
1

(2⇡)3
�4T 4

!11
p

, (3.8){cross-section}{cross-section}

whence we read off the thermalisation time

tth ⇠
(2⇡)3

m

✓
m3

�T

◆4 ⇣!p

m

⌘11
. (3.9){t_therm2}{t_therm2}

Note the steep increase of tth with the particle’s energy. The modes relevant for the decay
have energies !p ⇠ `�1

⇠ m. Their thermalisation predominantly takes place through
the interaction with modes of comparable energy. Substituting !p ⇠ m to eq. (3.9) and
switching back to the dimensionless units (eqs. (2.9) and (3.1)), we obtain

tth ⇠
(2⇡)3

T̃ 4
. (3.10){t_therm3}{t_therm3}

To check this estimate, we make the following numerical experiment. First, we switch
the sign of self-interaction in (3.2) in order to avoid dealing with decays. We prepare an
ensemble of initial states according to the equilibrium distribution (3.4), (3.5) (in (3.5),
one should change the sign of the last term). Then, the power in the long modes with

32 $ 2 scattering preserves the energy distribution due to (1 + 1)-dimensional kinematics.

– 10 –

A. Shkerin, Perimeter Institute



22Thermalisation with external heat bath
We perform the numerical experiment estimating the thermalisation time of long modes 
with the Langevin evolution.

Effective temperature of long modes ( , blue) and the 
temperature of the ensemble ( , red)

k < m
k > m

Figure 10: Thermalization of long modes in the classical system described by the Langevin equa-
tion (5.1) with ⌘̂ = 10�3 (left) and ⌘̂ = 10�2 (right). The Fourier modes with k < 1 are initially
prepared in a thermal state with the temperature Te↵ twice smaller than the temperature of the
thermostat T̂ = 0.1. The blue (red) line shows Te↵ of the modes with k < 1 (k > 1). The width of
the lines corresponds to the measurement uncertainty.

in agreement with the fluctuation-dissipation theorem. Every Fourier mode of the field � is
now coupled to the external heat bath, and its thermalization rate is set by the dissipation
coefficient rather than the interaction with other modes:

tth ⇠ ⌘̂�1 . (5.3)

This is true as long as ⌘̂ is larger than the inverse thermalization time in the Hamiltonian
system, ⌘̂ & 10�6.

We solve eq. (5.1) numerically using a 3rd order stochastic, spectral, operator-splitting
scheme [66], see Appendix C for details. We use the grid parameters listed in Sec. 3.1
and the time step h = 2.5 · 10�3. First, we repeat the numerical exercise performed in
Sec. 3.3 to study the thermalization rate. Namely, we take the lattice model (3.2) with a
positive sign of the self-interaction, prepare a suite of simulations in thermal equilibrium
around the vacuum, remove half of the power from the long modes, and evolve them with
the discretized version of eq. (5.1). Measuring the effective temperature of the long modes,
we monitor how quickly the heat bath restores the equilibrium. The results are shown in
Fig. 10 for the two values of the dissipation coefficient. They should be compared with
Fig. 4(b) (note the different time scale in the two figures) and confirm the validity of the
estimate (5.3).

Next, we return to the model with negative self-coupling. We prepare an ensemble
of simulations in thermal equilibrium around the false vacuum and let it evolve according
to the stochastic eq. (5.1). Counting the surviving configurations at different moments of
time we obtain a family of the survival probability curves lnPsurv(t) for different values
of T̂ and ⌘̂. A typical representative corresponding to T̂ = 0.1, ⌘̂ = 10�2 is shown in
Fig. 11(a) by the thick red line. It must be contrasted with the survival probability curve
of the Hamiltonian ensemble (⌘̂ = 0) with the same temperature (thin blue line). We see
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The result agrees with the estimate .tth ∼ η−1
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In simulations, we take  and  (in units of mass).L = 100 a ≃ 0.01

The plots below demonstrate insensitivity of the decay rate to  and .L a
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Figure 17: Dependence of the measured decay rate in the Hamiltonian simulations on (a) the
lattice size L at fixed spacing a = 1.2 · 10�2 and (b) the spacing a at fixed size L = 100. The
ratio of the time step to the lattice spacing h/a = 0.82 is fixed in both cases. Error bars show the
statistical uncertainty of the measurements.

Finally, we directly explore the dependence of the decay rate on a. Fig. 17(b) shows
ln � measured in ensembles of simulations with different a and fixed box size L = 100. We
see that the results are consistent with each other within the statistical uncertainty. The
latter is �stat

ln� ⇠ 0.1 for the two sets of simulations at a = 1.2 · 10�2 and a = 2.4 · 10�2, and
thus we conclude that the systematic error is below this value.

C.3 Operator-splitting scheme for the Langevin dynamics

Here we outline the operator-splitting method to solve the Langevin equation (5.1). We
write it again as a system of first-order equations

(
�̇ = ⇡

⇡̇ = �� � � � s�3
� ⌘̂⇡ + �⇠̂ ,

(C.10)

with �2 = 2⌘̂T̂ . If the force ⇠̂(t) were a smooth function of time, we could proceed as
before and write the solution between t and t + h as in eq. (C.2), where O is the operator
associated with the system (C.10). The force and linear dissipation terms in (C.10) would
belong to the linear part of O, and the evolution due to the linear part could still be solved
exactly.

Complications arise because ⇠̂(t) is not smooth: it is a white noise having arbitrarily
sharp variations. Developing accurate numerical scheme for this case is non-trivial [106].
The idea is to replace eqs. (C.10) on every time step by another system with a regular
force term in such a way that the solutions of the two systems have the same statistical
properties, up to the required order of precision. The simplest choice would be replacing
⇠̂(t, x) by a sequence of independent Gaussian random variables ⇠t

i
with zero mean and

variance ⌦
⇠ti⇠

t

j

↵
=

1

h
·
�ij
a

, (C.11)
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We use this to put the upper bound on the systematic error of the decay rate measurement.
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(a) (b)

Figure 15: (a) Relative energy non-conservation of the L-N operator-splitting scheme (C.8) for the
Hamiltonian evolution (C.3) (s = +1). Here T̃ = 0.1, h/a = 0.8192. (b) Two field configurations,
which are evolved from the same initial state with h/a = 0.8192 (black), 0.4096 (red), at the moment
of decay at t = 2473.14. We take T̃ = 0.1. fig:numtest1

C.2 Operator-splitting scheme for the Langevin dynamics

Here we outline the operator-splitting method to solve the Langevin equation (5.1). We
write it again as a system of first order equations

(
'̇ = ⇡

⇡̇ = �' � ' � s'3
� ⌘⇡ + �⇠

(C.9){Eqs2}{Eqs2}

with � = 2⌘T . It is possible to proceed as with the deterministic equation and write the
solution between t and t + h as in eq. (C.4), where O is the operator associated with the
system (C.9). The additive noise and linear dissipation terms in (C.9) belong to the linear
part of O, and the evolution due to the linear part can still be solved exactly. The time-
discrete version of the write noise ⇠(t, x) is a sequence of independent Gaussian random
variables ⇠t(x) with zero mean and variance

⌦
⇠t(x)⇠t(x0)

↵
=

1

h
�(x � x0) . (C.10)

However, such treatment of the stochastic term reduces the order of convergence to at most
1, regardless the order of the subsequent splitting [60]. To achieve better convergence, the
operator O needs to be modified [61, 62].

C.2.1 3rd order scheme

Let ('t,⇡t) be the solution of (C.9) at time t. Following [37], we write the solution at time
t+ h as  

't+h

⇡t+h

!
= ehO3

 
't

⇡t

!
, (C.11){EqSol3}{EqSol3}
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Hamiltonian dynamics

We use the 4th order pseudo-spectral, operator-splitting scheme. 

The plots below show that it is enough to take  to achieve the relative energy non-
conservation .

h /a ≃ 0.8
≲ 10−6

Relative energy variation Two decaying configurations evolved 
from the same initial state, with 

.h /a = 0.4, 0.8
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Langevin dynamics

Figure 18: Measurement of the thermal mass in eq. (C.24) in the ensemble evolved using the
scheme with (�, �) = (3, 3), and h = 2.5 · 10�3, T̃ = 0.1, ⌘ = 1. The average is over 100 realisations
in the ensemble and over 200 sample points for each realisation, evenly distributed between t = 0
and t = tf = 40, see Fig. 17. The fit uses first 40 modes; the black dashed line corresponds to
the best-fit value of mth, the blue and red dash-dotted lines correspond to the bare mass and the
one-loop thermal mass, respectively. fig:app:meff

of Te↵ during the field evolution with a large dissipation coefficient ⌘ = 1, averaged over
100 realisations. The realisations are prepared in the thermal state with T̃ = 0.1, and we
see that, on average, Te↵ = T̃ with the required precision. Fig. 18 shows the measured
dispersion relation (C.24) in the same ensemble. The one-loop thermal mass prediction is
m2

th = 1+3T̃ /2 = 1.150 (we take the positive sign of self-interaction), and the measurement
gives m2

th = 1.141. The . 1% discrepancy is partially due to higher-loop thermal corrections
to the mass. Indeed, the 2-loop contribution is expected to be

�m2
th,2�loop / T̃ 2 , (C.25)

which gives ⇡ 1% correction at T̃ = 0.1.

C.3 Box size and lattice spacing

All numerical results in the main text were obtained for the lattice theory (3.2) defined in
a box of size L with periodic boundary condition. To apply these results to the continuum
theory (2.1) in the thermodynamic limit, we have to make sure that both L and the lattice
spacing a are well separated from the scales where the dynamics relevant for the decay
happens.

The finite-L correction to the critical bubble is exponentially suppressed as long as L is
much bigger than the bubble size. Next, the finite-L correction to the thermal mass (2.10)
is estimated as (in units (3.1))
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We use the 3rd strong order pseudo-spectral, operator-splitting scheme. 

The timestep is  at  and  at .h /a ≃ 0.25 η ≲ 1 h /a ≃ 0.1 η > 1

Dispersion relation measured in simulations (black), compared 
with the free (blue) and thermally-corrected (red) ones.

Effective temp. of long and short modes 
measured during the simulation.

We took it from [Telatovich, Li, 1706.04237] but corrected their mistake.
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