

PSD12: The 12th International Conference on Position Sensitive Detectors

Panel TOF-PET imager

Rok Pestotnik¹, Gašper Razdevšek², Rok Dolenec^{1,2}, Peter Križan^{1,2}, Stan Majewski³, Andrej Studen^{1,2}, Samo Korpar^{1,4}, Georges El Fakhri⁵

E-mail: Rok.pestotnik@ijs.si

¹Jožef Stefan Institute, Ljubljana, Slovenia, ²Faculty of Mathematics and Physics, University of Ljubljana, Ljubljana, Slovenia, ³University of California Davis, Davis, USA, ⁴Faculty of Chemistry and Chemical Engineering, University of Maribor, Maribor, Slovenia, ⁵Gordon Center for Medical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA

Positron emission tomography (PET) is one of the most important diagnostic tools in medicine, providing three-dimensional imaging of functional processes in the body. The method is based on detecting two gamma rays originating from the point of annihilation of the positron emitted being by radio-labelled agent, and used to follow the human's physiological processes. In Time-Of-Flight PET gamma rays' arrival time is measured in addition to their position. The coincidence timing resolution (CTR) of state-of-the art scanners is between 200 ps and 500 ps FWHM, which can already significantly improve the contrast in imaging large objects. To increase the sensitivity of the next-generation PET scanners timing accuracy should be substantially increased. By using latest advances multichannel system with improved CTR is becoming technologically possible. Generally 3D images from limited angle PET scanners are distorted and have artefacts. Fortunately, with improving timing resolution of PET gamma detectors, artefact free images can be obtained even by a very simplified detector. In the contribution we will show the simulation studies of the simple panel detector using gamma detectors with 50 ps coincidence timing resolution. With this new concept, the price of PET scanners for imaging single or multiple organs can be drastically decreased. We evaluated different panel detector arrangements by imaging different phantoms. We compared the reconstructed images with the image obtained with the Siemens Biograph Vision, state-of-the-art clinical PET scanner. We found comparable image quality parameters of both systems when the CTR approaches 50ps FWHM and also that good CTR can partially compensate for smaller gamma detection efficiency.

Limited angle PET

Potential benefits

Mobility

Portable or bedside PET imaging

Flexibility

Adjustable FOV and sensitivity

Modularity

Combining multiple panels \rightarrow multi-organ/tot body PET scanner

Accessibility

Reduced manufacturing cost and complexity

Challenge

Limited angle PET scanners will generally produce distorted images with artefacts unless they have good **time-of-flight** information

As the **coincidence time resolution (CTR)** improves, the angular sampling requirement to obtain distortion-free images decreases

The10ps-challenge.org

Specification of simulated scanners

		Limited angle scanner	Reference scanner
40 cm $\frac{1}{30}$ cm	Scintillator	LSO	LSO
	Crystal size	3 x 3 x 5/10/15/20 mm ³	3.2 x 3.2 x 20 mm ³
	Panel detector size	30 x 30 cm	/
	Axial field of view	30 cm	26.3 cm
	Distance between panels	40 cm	
	Ring diameter	/	78 cm
	Energy resolution	10%	10%
	Energy window	435 – 585 keV	435 – 585 keV
Notation: <i>N</i> panels_dmm_tps	Coincidence time resolution	200 ps, 100 ps, 75 ps, <mark>50 ps</mark>	214 ps
	Coincidence time window	2 ns	4.1 ns

State-of-the-art in TOF

Clinical scanner:

Siemens Biograph Vision PET/CT \rightarrow 214 ps

Laboratory measurement:

Multi-panel limited angle PET system

Aim:

Study the performance two-panel and four-panel designs and gain

S. Surti, J. S. Karp, Physica Medica 32 (2016) 12-22

Gundacker et al, Phys. Med. Biol. 65 https://www.siemens-(2020) 025001 (20pp) healthineers.com/molecularimaging/pet-ct/biograph-vision

 $2 \times 2 \times 3 \text{ mm LSO} \rightarrow 58 \text{ ps}^*$

 $2 \times 2 \times 20 \text{ mm LSO} \rightarrow 98 \text{ ps}^*$

*measured with high power readout electronics that cannot be scaled to large devices

insight into potential real-world applications

Reference system \rightarrow implemented in simulations following the design of Siemens Biograph Vision PET/CT scanner

Methods

Open-source software Geant4/GATE \rightarrow Monte Carlo simulations of digital phantoms and different scanner designs

Open-source software CASTOR \rightarrow image reconstruction with Maximum Likelihood Expectation Maximization (**MLEM**) algorithm

Simulations were performed on a **Grid** \rightarrow Slovenian national super-computing network (SLING)

4panels_10mm_75ps

Quantitative measures used to evaluate the image quality

percent contrast

Measurement \rightarrow J. van Sluis, J Nucl Med 2019 60(7) 1031-1036

Spatial resolution

background

Example of a possible application

Image quality

Reference scannei

Conclusion

Good coincidence time resolution can:

- enable us to obtain good image quality with a simple limited angle PET system without distortions or artifacts
- > Spatial resolution substantially degrades with increased crystal length in the two-panel design due to the parallax error
- > Four-panel design can produce images of comparable quality, compared to the state-of-the-art reference scanner
- <u>Next steps</u>: build a prototype limited angle PET scanner and experimentally confirm the feasibility of such devices

Structural similarity index Normalized root-mean-square error

$$SSIM(x,y) = \frac{(2\mu_x\mu_y + C_1)(2\sigma_{xy} + C_2)}{(\mu_x^2 + \mu_y^2 + C_1)(\sigma_x^2 + \sigma_y^2 + C_2)}$$
NRMSE = $\frac{1}{\overline{y}}\sqrt{\frac{1}{n}\sum_{i=1}^n (y_i - x_i)^2}$

System	MSSIM	NRMSE
2panels_5mm_200ps	0.221 ± 0.001	0.471 ± 0.001
2panels_5mm_50ps	0.361	0.393
2panels_10mm_75ps	0.436	0.402
2panels_20mm_100ps	0.470	0.422
4panels_10mm_75ps	0.576	0.376
Reference scanner	0.563	0.402

compensate for lower detection efficiency or smaller angular coverage