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The portable Hybrid Gamma Camera (HGC) [1] is one example of
the use of low profile high energy detectors for intraoperative
imaging and radiation source detection in 3D space.

The current light splash identification algorithm used in the HGC
is automatic scale selection [2]. There are some limitations with
this technique;
1) It over-detects some background pixels as light splashes, but

can also miss lower energy light splashes.
2) It does not predict the scale (size) of the light splashes well.
3) It is too slow for frames with >10 events, decreasing the HGC

frame rate or count rate capability.
4) It’s performance is strongly dependant on the noise

thresholding value chosen.

The poster investigates alternative techniques for reconstructing
HGC gamma events in real-time.

Six automatic detection algorithms are applied to simulated HGC data. These are:
1. LoG1: The current automatic scale selection method used by the HGC.
2. LoG2: A different implementation of the Laplacian of Gaussian technique [3], from the Python scikit-image library [4].
3. DoG: A Difference of Gaussian (DoG) algorithm [5] from the scikit-image library.
4. DoH: A Determinant of Hessian (DoH) algorithm [6] from the scikit-image library.
5. Faster RCNN based on VGG16: An implementation of the faster Region-Based Convolutional Neural Network (RCNN) [7] 

based on a pre-trained VGG16 [8], training with the simulated image frame dataset. 
6. ResNet-101 based faster RCNN: An implementation of the faster RCNN based on a pre-trained ResNet-101 [9], training 

with the same simulated image frame dataset.
These algorithms are compared for performance in identifying light splashes, their size and total energy, and speed.
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The HGC’s gamma detector is a 1.5mm thick CsI:Tl scintillator
coupled to an EMCCD. Each gamma interaction in the scintillator
produces a light splash on the EMCCD. By locating these light
splashes, a gamma image can be built up over a number of image
frames.

Figure 1: Simulation of the HGC in clinical use (thyroid scanning).

Figure 2: Example image frames (figure D-F) from radiation sources of Cd109, 
Co57, Am241 respectively. Each light splash is a single gamma interaction.

Conclusion

Figure 4: Box plots comparing the performance of each algorithm. The red line represents an ideal scale predicator.

Figure 3: Evaluation of each light splash identification algorithm.

The LoG2 and faster RCNNs can mitigate the light splash over-detection problem. The faster RCNN-based VGG16 shows the best correlation coefficients in scale and energy predictions. Moreover, the
detection speed of LoG2 and faster RCNNs are suitable for real-time imaging. Faster RCNNs do not require pre-processing thresholding. Based on these results, the faster RCNN based VGG16 will be
implemented in future iterations of the HGC.

All new tested models showed an improvement over LoG1. For splash localisation, LoG2 gives the best performance with the
highest F1-score of 98.21%, the biggest PR AUC. For the blob scale and energy prediction task, faster RCNN based on the
VGG16 model performed best. Therefore, LoG2 and the faster RCNN based VGG16 model can improve the current light
splashes identification of the HGC.

Data simulation and preparation Evaluation metrics

For RCNN techniques, images were converted to a
PASCAL Visual Object Classes (VOC) format [10] for
applying faster RCNNs.

Figure 7: Description of generated frames.

Figure 6: Three simulated date frames.

Figure 5: Kolmogorov-Smirnov test
for an experimental light splash.

Light splashes were
simulated as 2D Gaussians
with size and intensity
distributions from
experimental data. Poisson
noise and background were
added to create 2720
simulated data frames
containing 28582 simulated
light splashes. KS testing

showed that both

Gaussian and Laplacian
distributions were equally

1. TP: true positive, a detected light splash with centre is ≤ 2 pixels away from a
ground truth splash’s centre.

2. FP: false positive, the detection algorithm misclassifies a background pixel as a
splash centre.

3. FN: false negative, a ground truth splash with no associated detection.
4. TN: true negative, all other pixels
5. Sensitivity = TP/(TP + FN)
6. Specificity = TN/ (FP + TN)
7. Precision = TP/(TP+FP)
8. Accuracy = (TP+TN)/(TP + TN + FP + FN)
9. F1-score = 2*((Precision*Sensitivity)/(Precision+Sensitivity)), which is the harmonic

mean of precision and sensitivity.
10. PR curve is a curve that shows the relationship between recall (sensitivity) and

precision. The x axis is sensitivity, and the y axis is precision.
11. PR AUC can be assumed as an approximation of the average of precisions [11].

reasonable fits to the
experimental data.


