

Future Upgrade for LHCb VELO

J. Haimberger^{1,2,*} on behalf of the LHCb collaboration

¹ CERN, 1211 Geneva 23, Switzerland

² Vienna University of Technology, 1040 Vienna, Austria jakob.haimberger@cern.ch

Vertex Locator (VELO) Upgrade II [1]

- To collect 300 fb⁻¹ at a luminosity of $\frac{14}{5}$ 16x10³³cm²/s **LHCb Upgrade II** will see 7.5 times higher occupancy and 6 times 3 a higher fluence than in Run 3/4.
- The Vertex Locator (VELO) is an array of hybrid silicon pixel detectors surrounding the interaction point
- The detector modules operate in a sec- Cooling Plate ondary vacuum separated from the primary vacuum by a thin aluminium foil (RF foil)
- Mean number of vertices per event from 5 to $42 \rightarrow \text{higher track density}$

Detector Layout

- The impact parameter resolution approximation $(\sigma_{IP} = \sigma_{extrap} \oplus \sigma_{scat}/p_T)$ for the extrapolation and multiple scattering terms
- The IP resolution can be approximated as a function of the minimal distance to the beam line, the amount of traversed material and the single hit resolution
- The Upgrade I layout (sensors at 5.1 mm from the beam line) imposes challenging requirements in terms of radiation hardness and data rate
- Radiation damage and cluster occupancy are roughly proportional to r^{-2}
- If we move from current layout (**Scenario A**) to **Scenario B** we have to reduce the material budget and improve pixel resolution.
- Same IP resolution can be achieved with a pixel resolution of 9 µm and 20 µm thick cylindrical foil
- To decrease the size of the detector in Scenario B:
- -Reduce maximum first hit radius by changing shape of inner hole
- Move sensors located further away from the interaction point closer to the beam -Reduce acceptance from $\eta < 5$ to $\eta < 4.8$

Requirement	Scenario A	Scenario B
TID Lifetime [MGy]	> 28	> 5
Sensor+ASIC Timestamp per Hit [ps]	≤ 50	≤ 50
Hit Efficiency [%]	≥ 99	≥ 99
Power per Pixel [µW]	≤ 23	≤ 14
Pixel Rate Hottest Pixel [kHz]	> 350	> 40
Max Discharge Time [ns]	< 29	< 250
Bandwidth per ASIC of 2 cm ² [Gb/s]	> 250	> 94
Minimum Sensor Distance from Beam [mm]	5.1	12.5
Mean Pixel Resolution [µm]	12.5	9
RF Foil [µm]	180	20
	corrugated	cylindrical
Length of the Detector [cm]	80	up to 140

• Scenarios in between are also possible: Layout with sensor position at 9.5 mm, 10.5 µm pixel resolution and a cylindrical foil with 20 µm thickness at 8.6 mm

Timing

Upgrade II track density for a 2000 ps time window (left) and a 20 ps time window(right)

- Upgrade II will lead to an drastic decrease in primary vertex reconstruction efficiency and an increase in the number of falsely reconstructed vertices
- Adding timing with at least 20 ps time resolution per track is needed to compensate, which can be achieved by either a 4D VELO or separate timing planes
- 50 ps time resolution in each hit (4D VELO) results in 20 ps time resolution per track
- Separate timing planes considered:
 - -Big timing planes at the end to cover the full VELO acceptance
 - -Smaller end caps with reduced acceptance
- End caps + barrel to recover the reduced acceptance due to small end caps
- At least 3 planes in each direction for hit rejection
- Each plane hast to have at least 25 ps time due to the limited number of planes, but only a spatial resolution of around 100 µmm is needed
- Timing planes suffer an additional error due to different t.o.f. for low momentum particles

Schematics of possible timing plane solutions

- 3 sensor types are considered for 4D VELO and timing planes:
- -Thin Planar Sensors:
- Radiation hard up to 1.6*10¹⁷ MeV n_{eq}/cm^2
- ?: low signal
- -Low Gain Avalanche Diode:
- (4): fast and sizeable signal
- n_{eq}/cm^2
- -3D:
- : radiation hard, fast collection time : inefficient volumes at the columns or
- trenches

ferred over dedicated timing planes

 $n_{
m tracks}$ Primary vertex reconstruction efficiency as a • On hit timing with 50 ps resolution is suffi- function of multiplicity for different timing solutions cient to recover reconstruction and is pre-

0.7Large timing planes $[0.25 \,\mathrm{m}^2]$ 'End-cap' timing planes [0.05 m²] 'End-cap' timing planes + Barrel 0.6 4D VELO 0.5150

Material Budget

- Material before first hit most important \rightarrow RF foil
- Current corrugated foil hard to thin down more→ Cylindrical foil or wire frame
- If the inner radius is increased to at least 8.6 mm it can be constructed out of a single piece, without problems during injection

Upgrade 1 corrugated RF foil [3]

- Requirements for new foils:
- Mechanical stability
- -Conducting the beam current
- -Containing the primary vacuum (if vacuum is still separated)
- -Shield sensors from wake field

- Primary Vacuum
- RF-Foil / • RF wire / box material

Schematics of possible RF foil shapes

References

- 1 https://cds.cern.ch/record/2653011/files/LHCb-PUB-2019-001.pdf
- [2] https://cds.cern.ch/record/1624070/files/LHCB-TDR-013.pdf
- [3] https://www.nikhef.nl/pub/departments/mt/projects/lhcb-vertex/production/UpgradeRFbox/IMG_9824.jpg