

Serial powering and signal integrity characterisation for the TEPX detector for the Phase-2 CMS Inner Tracker

Kyle Cormier, Arne Reimers, Yuta Takahashi, Anna Macchiolo, Stefanos Leontsinis, Florencia Canelli, for the CMS Tracker Collaboration

The High-Luminosity LHC

The LHC and its accelerator complex will be upgraded in order to provide more data to the experiments.

The HL-LHC is expected to deliver 4 ab⁻¹ of collisions to the ATLAS and CMS experiments over its lifetime.

This extremely large dataset will allow for precision Standard Model measurements, even of rare processes such as 4-top production and rare higgs decays. Simultaneously, it will enable searches for new physics beyond the Standard Model.

The CMS Phase-2 Inner Tracker

Communication Tests in the TEPX Disk

Establish powering and communication in the TEPX disk. Tests performed on: fewer data lanes at higher **Ring 1:** 5 Modules, 15 data lanes radius, due to lower pixel occupancy further from the Ring 3: 9 Modules, 9 data lanes 🛩 beam line

Data transmission at 1.28 Gb/s

- Most Chips establish communication with default settings
- Sometimes adjustments of signal amplitude and pre-emphasis are required
- Further improvements expected in final setup
- with impedance matched cables
- On-going studies into cross-talk and interference between data lanes
- Expanding to also test Ring 5
- On- chip registers are used to control the signal amplitu and pre-emphasis on the streams.
- Study the bit error rates (as a function of amplitude pre-emphasis setting

	\sim				-
ude	ing 300	9.51e-04	9.51e-04	9.51e-04	10 ⁻⁴
data	Sett	2.14e-06	8.74e-05	7.35e-08	
	de 500	4.56e-09	5.75e-08	4.09e-09	
	litu 600	1.90e-10	2.85e-10	9.51e-11	
BER)		9.51e-11	9.51e-11	9.51e-11	
and		9.51e-11	9.51e-11	9.51e-11	
S		9.51e-11	9.51e-11	9.51e-11	10 ⁻⁹ 0
	000	9.51e-11	9.51e-11	9.51e-11	- 10-10
	н		1	2	- 10

Ring

Digital Module 3 in Ring 1 Serial Powering Chain No pre-emphasis BER lower limit: 9.51e-11

into three subsystems: - The Tracker Barrel Pixels (TBPX) -The Tracker Forward Pixels (TFPX) -The Tracker End-Cap Pixels (TEPX)

The Inner Tracker is divided

Individual pIxel modules attached to either 2 or 4 readout chips and a flex circuit

System Overview

4.87 m² of active silicon 4352 modules 1.95 billion readout channels 40 kW front-end power

Module Powering Scheme

- Modules powered in series - chips within each module powered in parallel - High-Voltage delivered in parallel

A Shunt-LDO regulator (SLDO) on each chip provides voltage regulation for each chip while maintaining a constant current drain.

~8 modules per power chair Analog Digital

Module Tuning + System Tests

Example Results: Sensor Module #1, Chip #1 in Ring 1

Systematic Comparison of Module Tuning Performance :

Standalone VS. Serial Powering Chain

End-Cap Disk, Ring 1 - Serial Powered

R1

R3

R5

Validate the module performance in the serial powering chain

Sensor modules are biased with a voltage of -50V

Comparisons made for 7 modules

Single Adapter Board

Tuning Performance

Run automated calibration procedure for available modules under various conditions:

- Ambient Temperatures (inside climate chamber): -50 C, -30 C, -10 C

> - Target Thresholds: 2000e, 1750e, 1500e, 1250e

- Standalone (Single Adapter Board) and in a Serial Powering Chain (Ring 1 with 5 modules)

The serial powering chain in Ring 1 is able to achieve tuning results comparable to what is achieved in a standalone setup