Instrumentation Challenges of the Strong-Field **QED Experiment LUXE at the European XFEL**

Kyle Fleck* on behalf of the LUXE collaboration

*kfleck02@qub.ac.uk, School of Mathematics and Physics, Queen's University Belfast, UK, BT7 1NN

Operating Modes

Abstract

The LUXE experiment aims at studying strong-field QED in electron-laser and photon-laser interactions, with the 16.5 GeV electron beam of the European XFEL and a laser beam with power of up to 350 TW. The strong-field QED processes are expected to have

Expected Signal at LUXE

- The expected signal varies significantly across the experiment
- Background is generally lower energy across all detector systems although particle number may be higher
- Important that detectors can effectively reject the lower energy background

production rates ranging from 10⁻³ to 10⁹ per 1 Hz bunch crossing. Additionally, these measurements must be performed in a low-energy, high-radiation background. The LUXE experiment will utilise various detector technologies to overcome these challenges¹.

Map of the LUXE collaborators

AUCL UNIVERSITY OF PLYMOUTH

na calorimete

	Positron	Electron	Photon
	detection	detection	detection
Electron	~10 ^{-4 -} 10 ⁷	$\sim 10^{6} - 10^{8}$	~10 ⁵
+ laser	$\sim 10^3 - 10^4$	$\sim 10^4$ - 10^5	$\sim 10^3 - 10^6$
Photon	~10 ⁻⁴ - 10	~10-4 - 10	~10 ⁵
+ laser	∼10 ² - 10 ⁵	~10 ² - 10 ⁵	~10 ³ - 10 ⁶

Table showing the expected signals (black) and background (red) per BX in each detector subsystem

Electron Detection		Positron Detection	
Čerenkov Detector	Scintillator Detector	Tracking Detector	Electromagnetic Calorimeter
 Insensitive to low energy electrons/positrons and all photons² Resolution in reconstructing electron energy varies from 0.3 - 0.5% Understand and the sense of the sense of	<text></text>	<text><list-item> KF tracking algorithm³ allows > 95% tracking for energies above 2.5 GeV Energy resolution ~0.27% from simulation In-situ resolution ~1% </list-item></text>	<text><list-item></list-item></text>
	0 2 4 6 8 10 12 14 16 Energy (GeV)	CAD model of tracker staves	CAD model of Total energy deposition

GEANT4 rendering of Čerenkov prototype (left)

Reconstruction of electron spectrum from GEANT4 simulation

(above) and reconstruction of signal tracks (right)

in calorimeter

electromagnetic

calorimeter

Conclusions

- Various detector systems have been proposed and their performance under LUXE conditions have been investigated
- Detectors have been developed to withstand high radiation levels as well as differentiate signal from low energy background
- Across all systems, a resolution of $\leq 15\%$ is anticipated over the energy range of interest
- Many of the technologies developed can be adapted for use in other strong-field QED experiments LUXE

References

¹Abramowicz, H. et. al. (2021), "Conceptual Design Report for the LUXE Experiment," arXiv.2102.02032 ²C. Bartels et al., "Design and Construction of a Cherenkov Detector for Compton

Polarimetry at the ILC", JINST 7 (2012), P01019, arXiv:1011.6314. ³P. Billoir and S. Qian, "Simultaneous pattern recognition and track fitting by the Kalman filtering method", Nucl. Instrum. Methods in Phys Res A: Accel., Spectrom., Detect. and Assoc. Equip. 294 (1990), no. 1, 219, doi:https://doi.org/10.1016/0168-9002(90)91835-Y. ⁴K. Fleck, N. Cavanagh, and G. Sarri, "Conceptual Design of a High-flux Multi-GeV Gamma-ray Spectrometer", Sci. Rep.10 (2020) 9894, doi:https://doi.org/10.1038/s41598-020-66832-x.