

Status and plans for the CMS High Granularity Calorimeter upgrade project

Eva Sicking (CERN) on behalf of the CMS collaboration

12th International Conference on Position Sensitive Detectors September 15, 2021

LHC and HL-LHC timeline

Experimental conditions from LHC to High-Luminosity-LHC:

Luminosity:	$2 \times 10^{34} \mathrm{s}^{-1} \mathrm{cm}^{-2}$	\rightarrow	$5-7.5 \times 10^{34} s^{-1} cm^{-2}$
Radiation background:	10^{14} neq/cm ²	\rightarrow	$1-1.5 \times 10^{16} \text{ neq/cm}^2$
Pile-up events:	O(40)	\rightarrow	O(140-200)

LHC and HL-LHC timeline

Detector adaptations from LHC to High-Luminosity-LHC:

Luminosity: Radiation background: Pile-up events: improved trigger and computing radiation-tolerant sensors and electronics precise timing and increased granularity

CMS upgrade for HL-LHC

 $\label{eq:rescaled} \begin{array}{l} \underline{Tracker:}\\ Radiation tolerant,\\ high granularity,\\ less material, tracks\\ in hardware trigger\\ (L1), coverage up to\\ |\eta|=3.8 \end{array}$

Barrel Calorimeter: New BE/FE electronics, ECAL: lower temp., HCAL: partially new scintillator

 $\label{eq:multiplicative} \begin{array}{l} \mbox{Muon system:} \\ \hline \mbox{New electronics} \\ \mbox{GEM/RPC coverage} \\ \mbox{in 1.5} < |\eta| < 2.4, \\ \mbox{investigate Muon} \\ \mbox{tagging at higher } \eta \end{array}$

 $\frac{\text{Timing layer:}}{\text{MIP timing to}} \\ 30 - 60 \text{ ps,} \\ \text{coverage up to} \\ |\eta| = 3.0 \\ \end{array}$

September 15, 2021

Numeration in the second secon

CMS CE a.k.a. HGCAL

Calorimeter Endcap or High Granularity CALorimeter

- ▶ $1.5 < \eta < 3.0$
- 215 tons per endcap
- ▶ Full system at -35°C
- \sim 620 m² of silicon sensors, \sim 6M channels in \sim 30k modules, cell size 0.5–1.1 cm²
- ► \sim 400 m² of scintillator, \sim 240k tiles + SiPMs in \sim 4000 boards, tile size 4–30 cm²
- Power at end of HL-LHC: 125 kW per endcap

 CALICE-inspired imaging calorimeter optimised for particle flow analysis

- El.-mag. section CE-E: Si, Cu, CuW, Pb absorbers, 28 layers, $25X_0\&\sim 1.3\lambda$
- Hadronic section CE-H: Si+scintillator+SiPM, steel absorbers, 22 layers, $\sim 8.5\lambda$

620 m² of silicon sensors

8-inch Low-Density sensor

 ~ 200 cells of 1.1 cm² size 300 μ m & 200 μ m active thickness

8-inch High-Density sensor ~ 450 cells of 0.5 cm² size 120 µm active thickness

- Used for CE-E and high-radiation regions in CE-H
 - Thickness and granularity adapted to radiation field (→backup)
- Hexagonal silicon sensor geometry
 - Largest tile-able polygon
 - Maximise wafer usage and aid tiling
 - "Partial" sensors to tile border regions (→backup)
- 8-inch wafers
 - Reduces number of modules w.r.t. 6-inch wafers
 - New production process and radiation-hardness qualification
- Planar, DC-coupled, p-type sensor pads
 - p-type more radiation tolerant than n-type sensors
- Sensor producer HPK

Standard & calibration cells Enlarged guard ring contact

Details of prototype sensor layout

September 15, 2021

Silicon radiation-hardness qualification

Full 8-inch sensors

- Neutron irradiation of 8-inch wafers up to 1 · 10¹⁶ neq/cm² at Rhode Island Nuclear Science Centre, US
- In 2020/2021 irradiated 40 HPK prototype sensors → Goal: identify best production process

RINSC 8-inch irradiation slot

Probe card system for full-wafer IV+CV tests

IV curves for 4 production process variants Pad 123

September 15, 2021

Silicon modules

8-inch prototype module stack-up

Wirebonds to cells, GR, bias voltage contact

- Glued sandwich of PCB, Si sensor, biasing/insulation layer and baseplate (rigidity, cooling, absorber element)
- Wire-bonding from PCB to silicon

Module assembly on automated Gantries

- Successfully operated O(100) 6-inch module prototypes in beam tests
- This week, beam test at CERN with 8-inch module prototypes

September 15, 2021

400 m² of scintillator for low-rad. regions

CALICE AHCAL SiPM-on-tile prototype

- Cheaper than silicon \rightarrow use in low radiation regions where S/N > 5 can be maintained up to 3 ab^{-1}
- 240k SiPMs integrated into the PCB, cooled operation to mitigate increasing leakage current
- Prototypes of injection-molded tiles and cast and machined tiles
- Development of automated wrapping and automated assembly of tile-module
- Successfully operated tileboards in beam tests, including also irradiated SiPMs

Injection molded tile

Tile wrapping machine

Tileboard prototype with irradiated SiPMs

Passive absorber plates and services

CE-H steel absorber plates

HGCAL detector services mockup

CE-E lead sandwich absorber plate prototype

- Procurement process of 600 tons of stainless steel started
- Stringent limits on relative magnetic permeability
- Achieved 1 mm flatness for CE-H steel absorber plates
- CE-E lead sandwich absorber development challenging due to relative softness and lower workability
- Mock-up structures to study installation steps and on-detector services locations

September 15, 2021

Front end electronics: Challenges

ECON concentrator

ASIC

- Low noise (<2500e) and high dynamic range (0.2 fC -10 pC)
- Timing information to O(10 ps)
- Radiation tolerant
- < 20 mW per channel (cooling limitation)
- Height limitation of layers hosting ASICs
 Cassette mockup

V3 HGCROC ASIC both for silicon and scint. modules

- ECON-T: aggregation and compression of cell sums for L1 trigger
- ECON-D: common-mode estimation and zero-suppression of triggered data

Offline reconstruction

Simulation of 140 pileup events in CMS

- Explore multiple reconstruction concepts: iterative reconstruction based on tracker reconstruction (TICL) as well as end-to-end Machine-Learning based approaches (ML4Reco)
- The Iterative CLustering (TICL) workflow
 - 1) merge hits to 2D clusters,
 - 2) merge clusters to tracks
 - Iterative approach: Reconstruct clearly identifiable objects first, then continue with remaining objects

Beam tests in 2016–2018

using 6-inch silicon modules and CALICE Scint. AHCAL

Energy deposits in space full prototype

Front hadronic layer

Publication outlook

- Construction and Commissioning of CMS CE prototype silicon modules
- The DAQ System of the 12,000 Channel CMS High Granularity Calorimeter Prototype
- El.-mag. response
- Hadronic response
- Precise timing
- SKIROC2-CMS ASIC beam tests

September 15, 2021

Beam tests in 2016–2018

using 6-inch silicon modules and CALICE Scint. AHCAL

Time of Arrival in ECAL part only Snapshot of shower development within $\sim 1 \text{ ns}$ (blue=early, yellow=late)

Front hadronic layer

Publication outlook

- Construction and Commissioning of CMS CE prototype silicon modules
- The DAQ System of the 12,000 Channel CMS High Granularity Calorimeter Prototype
- El.-mag. response
- Hadronic response
- Precise timing
- SKIROC2-CMS ASIC beam tests

September 15, 2021

Beam test results for el.-mag. showers

6-inch prototype results

- Linearity better that 3% for data and 1.5% for simulation
- Stochastic term of energy resolution of 21–22√GeV%
- Constant term of 0.6%
- Good agreement between data and simulation, also for position and shower axis resolution

Position resolution in layer 7

September 15, 2021

Beam test results for el.-mag. showers

6-inch prototype results

- Linearity better that 3% for data and 1.5% for simulation
- Stochastic term of energy resolution of 21–22√GeV%
- Constant term of 0.6%
- Good agreement between data and simulation, also for position and shower axis resolution

Shower axis pointing resolution

September 15, 2021

Recent CE re-optimisation

- Prototyping improved understanding of front-end chip size and tolerances of absorber layers
- Adapt geometry to realistic tolerances while preserving overall radiation/interaction lengths
- Example: Number of CE-E layers reduced from 28 to 26 per endcap to minimise overall risk with minimal impact of performance

Impact on energy resolution in CE-E only

Layer structure of TDR (2018)

September 15, 2021

Recent CE re-optimisation

- Prototyping improved understanding of front-end chip size and tolerances of absorber layers
- Adapt geometry to realistic tolerances while preserving overall radiation/interaction lengths
- Example: Number of CE-E layers reduced from 28 to 26 per endcap to minimise overall risk with minimal impact of performance

Impact on energy resolution in CE-E only

Reoptimisation of CE layer structure

	TDR	Re-optimised
# layers in CE-E, sampling layout	28, uniform	26; last four thickened
# layers in CE-H (all Si)	8	7
# layers in CE-H (mixed)	14	14
CE-H: thickness of thin/ thick absorbers	35.0mm / 66.0 mm	41.5 mm / 60.7 mm
Depth of CE-E	25.4 X ₀	27.7 X ₀
Total depth	9.85 λ	9.97 λ

September 15, 2021

Summary and Outlook

- Lots of progress since the Technical Proposal (2015) and the Technical Design Report (2018)
- Several key components approach end of prototyping phase
- Ongoing activity towards Engineering Design Report
 - Finalisation of designs
 - Qualification of final prototypes
 - Assembly of modules with final prototypes in assembly centres and beam tests
 - Market surveys and orders
 - Pre-productions
- Next major steps
 - CE Engineering Design Report in summer 2022
 - CE production start in 2022
 - HL-LHC start in 2027

September 15, 2021

Backup

September 15, 2021 Eva Sicking: Status and plans for CMS HGCAL

Requirements on new calorimeter endcap

September 15, 2021

Silicon radiation-hardness gualification

Test structures in neutron and X-ray irradiation

Charge collection eff. vs. fluence

- Optimise sensor thickness to fluence
 - Thin sensors for high fluence regions
 - Lower starting signal before irradiation maintained to higher fluences
- Adapt operation to rad, environment
 - Increase bias voltage up to 800 V to ► compensate signal loss
 - Operation at -35° C to reduce radiation-induced leakage current
- Identify best HPK oxide variant using X-ray irradiations

Silicon cassettes

CuW baseplate

- Modules are combined to cassettes
- Self-supporting sandwich structures (with absorbers)
- Modules placed on both sides of Cu cooling plate and closed with Pb plates

Layer structure

 Silicon-only layer (in CE-E) indicating cassettes (green and yellow) and different sensor thicknesses (shades)

 Mixed layer (in CE-H) with silicon at high η and scintillator+SiPM at low η

Multi-Geometry wafers

LD partial sensor layout names

- Border regions of endcap will be tiled with partial sensors made from multi-geometry wafers
- Partial sensors allow increase in coverage of the detector
- Partials sensors increase complexity of the detector design significantly (increase in number of sensor variants, module PCBs, assembly tools, ...)