

Penetrating Particle Analyzer

Development of a Penetrating particle ANalyzer for highenergy radiation measurements in space

Philipp Azzarello on behalf of the PAN consortium

Département de physique 14.09.21 nucléaire et corpusculaire PSD12 - 14.9.2021

- PAN is a generic instrument technology for deep space and interplanetary missions.
- Capable of precisely measure and monitor in real time the flux, composition, direction of penetrating particles (> ~100 MeV/nucleon)
- Consortium of three institutes:
 - > Department of nuclear and particle physics, University of Geneva
 - INFN sez. di Perugia
 - > Institute of Experimental and Applied Physics, Czech Technical University in Prague

- > Particles trapped in planetary magnetic fields
 - > Only dominant in the radiations belts near the planets
 - Important topic in planetary science (e.g. Jupiter's large magnetosphere)
- Steady flux: Galactic Cosmic Rays (GCR)
 - Dominant at energy > 100 MeV/n, peaking at ~1 GeV/n
 - Mainly protons and Helium ions
 - Modulated by solar activities
 - > Important contributor to shielded TID (Total Ionization Dose) for long missions
- Transient flux: Solar Energetic Particle (SEP)
 - > Particles from solar eruptions (flare and Corona Mass Ejection)
 - Rare and intense "GeV" Solar Particle Events are highly damaging/dangerous
 - Could be 1000s times more intense than GCR

PAN Science goals

Penetrating Particle Analyzer

- Cosmic ray physics: fill an in situ observation gap of galactic cosmic rays (GCRs) in the GeV region in deep space
 - > Understanding of the origin of the GCRs and their interplay with solar activities
 - Antimatter searches
- > Solar physics: provide precise information on solar energetic particles
 - Study the physical process of solar events, in particular those producing intensive flux of energetic particles.
- Space weather
 - > Improve space weather models from the energetic particle perspective.
- > Planetary science: measure and monitor energetic particles
 - > Develop a full picture of the radiation environment of a planet/moon, in particular as a potential habitat.
- Deep space travel: penetrating particles are difficult to shield
 - > PAN can monitor the flux and composition of penetrating particles during a space voyage.
 - > PAN can be part of a standard on-board instrument suit for radiation monitoring for deep space travel.

Measuring Gev protons

Penetrating Particle Analyzer

- The energy of GeV protons cannot be measured by the ΔE – E method as used for low E protons.
 - > 170 cm of Si needed to stop 1 GeV protons
 - The nuclear interaction length in Si is 46.52 cm, thus with 170 cm of Si, it is likely to produce a hadronic shower before losing all the energy by dE/dx
 - A calorimeter is too thick/heavy and has bad resolution (~30-40%)
- The solution is to use a magnetic spectrometer
 - > Measure the bending of charged particles in the B-field \Rightarrow rigidity (p/Z)
 - Then infer the momentum and energy with independently measured particle charge Z

5

The PAN instrument

- Light (< 20 kg)
- Low power (< 20 W)
- Symmetric: measure particles coming in from both ends
- > 4 Halbach permanent magnet sectors, each (\emptyset = 10 cm, L = 10 cm) \rightarrow dipole magnetic field of ~0.2 Tesla

14.09.21

Penetrating Particle Analyzer

- <10% for protons of 0.4 20 GeV for 4-sector acceptance</p>
- <20% for protons of 0.2 2 GeV for 1-sector acceptance</p>

14.09.21

PSD12 - 14.9.2021

Horizon 2020 European Union Funding for Research & Innovation

Penetrating Particle Analyzer

- Funded by the EU H2020 FETOPEN program to develop a demonstrator (Mini.PAN) in 3 years (2020-2022)
- Suitable for space weather and planetary applications (5-8 kg)
- 2 Sectors with smaller dimensions with the same instrumentation (ToF, pixel, tracker)
- The shorter sector length (5 cm) is compensated by a stronger magnetic field.
- ► It is a demonstrator for the PAN technology.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 862044.

The Mini.Pan instrument

Penetrating Particle Analyzer

- 2 magnets (Ø = 5 cm, L = 5 cm)
- Three tracker modules
 - StripX: Measure bending radius and angle
 - StripY: Measure position and time stamp
 - Charge measurement
- Two pixel detector modules
 - Avoid measurement degradation for high rate solar events
 - Extra charge and 3D point measurement
- Two TOF modules
 - > Trigger, particle counter
 - Charge and time measurement

Review meeting 1 - WP7: AIV

Magnets

Penetrating Particle Analyzer

- Three prototype magnets have been designed (P. Thonet, CERN) and produced.
- Each magnet is ~0.8 kg; Central field 0.4 T, Field homogeneity ~ 10 %. (Field measurements: C. Petrone, G. Deferne, CERN)
- Two new magnets have been delivered, and will be tested in the coming weeks at CERN.

Penetrating Particle Analyzer

Timepix3 quad detector:

- > 262'144 pixels with pixel pitch 55 μ m (2.8 x 2.8 cm)
- Simultaneous time of arrival (ToA) and time over threshold (ToT) measurement in each pixel.
- Sensor thickness 300 μm
- > ToA binning: down to 1.56 ns

Challenges:

- Power consumption (currently: 4 W, goal: 2.5 W)
- Temperature management (w/o cooling in air: ~55°, in vacuum <~ 80°)</p>
- Two pixel modules will be produced for integration in April 2022.

Pixel module – beam test - ³He 36 MeV

Penetrating Particle Analyzer

- Beam test at UJV Rez facility, Czech Republic
- Particles: ³He 36 MeV

Example data: Particle impact at 75°

14.09.21

PSD12 - 14.9.2021

Tracker detector

Penetrating Particle Analyzer

- Mini.PAN will be equipped with three tracker modules
- Each module hosts three sensors.
- Two to measure the X-coordinate ("StripX")
 - > 150 μ m thickness, 25 μ m pitch, 2048 strips, all read out.
 - > 32 IDEAS IDE1140 ASICs to read out one sensor.
 - > Double metal layer to route the signals all around the sensor (pitch 96 μ m to connect to the ASICs).
 - Active area: 5 cm x 5 cm
- One to measure the Y-coordinate ("StripY")
 - > 150 μ m thickness, 400 μ m pitch, 128 strips, all read out.
 - > 1 IDEAS VATA GP 7.2 ASIC to read out one sensor.
 - > Active area: disk of 5 cm diameter.
- Sensors external dimension 6 cm x 6 cm
- > Produced by Hamamatsu.

PSD12 - 14.9.2

Tracker board

Penetrating Particle Analyzer

- Three StripX sensors have been tested during various beam tests.
- Analysis of the spacial resolution and signal response is ongoing.

14.09.21

Summary

- Penetrating Particle Analyzer
 - > The Mini.PAN project is in good progress.
 - The integration of the various detectors into the final instrument is foreseen for April 2022.
 - Modules of each subdetector (Pixel, Tracker, TOF) will be studied in the coming weeks at various beam tests at CERN.
 - The integrated instrument will then be tested in beams and have partial space qualification tests (in particular thermal and thermal vacuum).
 - > We are actively looking for flight opportunities (from 2023):
 - Lunar Gateway
 - CubeSat missions
 - > Jupiter radiation belt exploration
 - European Large Logistic Lander (EL3) for Moon exploration